TALK ON DRINFELD-GAITSGORY INTERPOLATION GRASSMANNIAN AND GEOMETRIC SATAKE EQUIVALENCE

1. Affine Grassmannian and geometric Satake

Let G be a reductive algebraic group over \mathbb{C} and $T \subset G$ is a maximal torus. We assume for the latter that $[G, G]$ is simply connected (for simplicity). Set $\mathcal{K}:=\mathbb{C}((z))$, $\mathcal{O}:=\mathbb{C}[[z]]$. Define $\operatorname{Gr}_{G}:=G(\mathcal{K}) / G(\mathcal{O})$. This is and ind-projective scheme called affine Grassmannian of G. Let X be a smooth projective curve over \mathbb{C} (for example $\left.X=\mathbb{P}^{1}\right)$. We fix a point $x \in X\left(0 \in \mathbb{P}^{1}\right)$. It is known that Gr_{G} has the following moduli description:

$$
\operatorname{Gr}_{G} \simeq\left\{\left.(\mathcal{E}, \sigma)|\sigma: \mathcal{E}|_{X \backslash\{x\}} \simeq \mathcal{E}^{\text {triv }}\right|_{X \backslash\{x\}}\right\}
$$

where $\mathcal{E}^{\text {triv }}$ is a tr Consider the action $G(\mathcal{O}) \curvearrowright \operatorname{Gr}_{G}=G(\mathcal{K}) / G(\mathcal{O})$ via left multiplication (changing the trivialization).
Remark 1.1. Fix a maximal torus $T \subset G$, let $\Lambda_{G}\left(\Lambda_{G}^{+}\right)$be the lattice (submonoid) of cocharacters (dominant cocharacters) of $T \subset G$. Any $\lambda \in \Lambda_{G}$ gives rise to the element $z^{\lambda} \in \operatorname{Gr}_{G}$. We set $\operatorname{Gr}_{G}^{\lambda}:=G(\mathcal{O}) \cdot z^{\lambda}$. We have the following (Cartan) decomposition:

$$
\operatorname{Gr}_{G}=\bigsqcup_{\lambda \in \Lambda_{G}^{+}} \operatorname{Gr}_{G}^{\lambda}
$$

Let $\operatorname{Perv}_{G(\mathcal{O})}\left(\mathrm{Gr}_{G}\right)$ be the category of $G(\mathcal{O})$-equivariant perverse sheaves on Gr_{G}. This abelian category has a Tannakian structure - tensor product comes from the convolution and fiber functor simply sends a sheaf \mathcal{P} to the global cohomology $V:=H^{*}\left(\operatorname{Gr}_{G}, \mathcal{P}\right)$. Geometric Satake isomorphism (to be denoted S_{G}) identifies $\operatorname{Perv}_{G(\mathcal{O})}\left(\operatorname{Gr}_{G}\right)$ and $\operatorname{Rep}\left(G^{\vee}\right)$ as Tannakian categories, here G^{\vee} is the Langlands dual group to G :

It follows that for any $\left.\mathcal{P} \in \operatorname{Perv}_{G(\mathcal{O}}\right)\left(\operatorname{Gr}_{G}\right)$ there exists an action $\mathfrak{g}^{\vee} \curvearrowright H^{*}\left(\operatorname{Gr}_{G}, \mathcal{P}\right)$. Goal: to construct it!

Remark 1.2. Let us recall the definition of a Tannakian category over \mathbb{C}. Let (\mathcal{C}, \otimes) be an abelian tensor category over \mathbb{C}. We say that \mathcal{C} is rigid if for any $V \in \mathcal{C}$, there exists a dual object V^{*} in the following sense: $\operatorname{Hom}_{\mathcal{C}}\left(W, V^{*}\right) \simeq \operatorname{Hom}_{\mathcal{C}}(W \otimes V, \mathbf{1})$ functorially on W, here 1 is the identity object of (\mathcal{C}, \otimes). Let $F: \mathcal{C} \rightarrow$ Vect $_{\mathbb{C}}$ be a tensor functor. We say that F is a fiber functor if it is exact and faithfull. We say that a category \mathcal{C} is Tannakian if it is abelian, tensor, rigid, equipped with a fiber functor and such that $\operatorname{End}_{\mathfrak{C}}(\mathbf{1})=\mathbb{C}$.

Remark 1.3. It is enough to construct the action of $U\left(\mathfrak{n}^{\vee}\right)$ on $H^{*}\left(\operatorname{Gr}_{G}, \mathcal{P}\right)=V$. To see this, let us recall that the functor H^{*} is T^{\vee}-graded:

$$
H^{*}\left(\operatorname{Gr}_{G},-\right) \simeq \bigoplus_{\mu \in \Lambda_{G}} H_{c}^{\left\langle 2 \rho^{\vee}, \mu\right\rangle}\left(S_{\mu},-\right)
$$

here $2 \rho^{\vee}$ is the sum of positive roots. We obtain the action of $\mathfrak{t}^{\vee} \subset \mathfrak{g}^{\vee}$ on V. Let us now suppose that we have constructed the action $U\left(\mathfrak{n}^{\vee}\right) \curvearrowright V$ geometrically. It follows from the construction that if we interchange B and B_{-}then we will obtain the action of $U\left(\mathfrak{n}_{-}\right)$. More detailed: we have two decompositions (by T^{\vee}-weight spaces)

$$
\bigoplus_{\mu} H_{c}^{\left.\left\langle 2 \rho^{\vee}, \mu\right\rangle\right\rangle}\left(S_{\mu}, \mathcal{P}\right) \simeq V \simeq \bigoplus_{\mu} H_{c}^{\left\langle-2 \rho^{\vee}, \mu\right\rangle}\left(T_{\mu}, \mathcal{P}\right) .
$$

The action of $U\left(\mathfrak{n}^{\vee}\right)$ comes from the first decomposition and the consideration of deformations of $S_{\mu}\left(\bar{S}_{\mu}\right)$, the action of $U\left(\mathfrak{n}_{-}^{\vee}\right)$ comes from the second decomposition and the consideration of deformations of $T_{\mu}\left(\bar{T}_{\mu}\right)$.
Remark 1.4. The convolution product of two perverse sheaves $\mathcal{P}_{1}, \mathcal{P}_{2}$ can be defined as follows. Consider the Beilinson-Drinfeld Grassmannian $\operatorname{Gr}_{\mathbb{A}^{1} \times \mathbb{A}^{1}, G}$, and a diagonal embedding $\mathbb{A}^{1} \hookrightarrow \mathbb{A}^{1} \times \mathbb{A}^{1}$. Let U be the complement to the diagonal in $\mathbb{A}^{1} \times \mathbb{A}^{1}$. It is easy to see that $\left.\left.\operatorname{Gr}_{\mathbb{A}^{2}, G}\right|_{U} \simeq\left(\operatorname{Gr}_{\mathbb{A}^{1}, G} \times \operatorname{Ar}_{\mathbb{A}^{1}}, G\right)\right|_{U}$. We consider the sheaf $\mathcal{P}_{\mathbb{A}^{1}, 1} \underset{\mathbb{A}^{1}}{\otimes} \mathcal{P}_{\mathbb{A}^{1}, 2}$ on $\left.\operatorname{Gr}_{\mathbb{A}^{2}, G}\right|_{U}$. By the definition $\mathcal{P}_{\mathbb{A}^{1}, 1} * \mathcal{A}^{1} \mathcal{P}_{\mathbb{A}^{1}, 2}:=i^{*} j_{*!}\left(\mathcal{P}_{\mathbb{A}^{1}, 1} \underset{\mathbb{A}^{1}}{\otimes} \mathcal{P}_{\mathbb{A}^{1}, 2}\right)$, where $j:\left.\operatorname{Gr}_{\mathbb{A}^{2}, G}\right|_{U} \hookrightarrow \operatorname{Gr}_{\mathbb{A}^{2}, G}, i: \operatorname{Gr}_{\mathbb{A}^{1}, G} \hookrightarrow \operatorname{Gr}_{\mathbb{A}^{2}, G}$ are open and closed embeddings

2. Geometric construction of the universal enveloping algebra

2.1. Main problem. Let B be a Borel subgroup of G, that contains T. Let Λ_{G} be the co-character lattice of $T \subset G$. Let B_{-}be the opposite Borel subgroup. Any $\mu \in \Lambda_{G}$ gives rise to the element $z^{\mu} \in \operatorname{Gr}_{G}$. For $\mu \in \Lambda_{G}$ define $S_{\mu}:=U(\mathcal{K}) \cdot z^{\mu}$ (resp. $\left.T_{\mu}:=U_{-} \cdot z^{\mu}\right)$.

Proposition 2.1. (Braverman-Finkelberg-Gaitsgory-Mircovic)
There exists an isomorphism $U\left(\mathfrak{n}^{\vee}\right) \simeq \underset{\mu \in \Lambda_{G}}{ } H_{c}^{\mathrm{top}}\left(S_{\mu} \cap T_{0}, \mathbb{C}\right)=: \mathcal{A}$ of T^{\vee}-graded vector spaces i.e. the vector space $H_{c}^{\mathrm{top}}\left(S_{\mu} \cap T_{0}, \mathbb{C}\right)$ identifies with the T^{\vee}-weight space $U\left(\mathfrak{n}^{\vee}\right)_{\mu}$.

It is known that $U\left(\mathfrak{n}^{\vee}\right)$ has a bialgebra structure. The goal for now is to describe multiplication and comultiplication morphisms in purely geometrical terms.
2.2. Zastava spaces. Suppose now that our projective curve X is \mathbb{P}^{1}. We fix a cocharacter $\mu \in \Lambda_{G}$. Set $\mathfrak{B}:=G / B$ - the flag variety. Recall that $\mathrm{H}_{2}(\mathfrak{B}, \mathbb{C})=\Lambda_{G}$, hence, we have a notion of a map $\mathbb{P}^{1} \rightarrow \mathfrak{B}$ of degree μ. The equivalent way to define a degree is the following: recall that for any character $\lambda: T \rightarrow \mathbb{C}^{\times}$one can consider the
corresponding line bundle \mathbf{L}_{λ} on \mathfrak{B}. We say that the map f is of degree μ if for any $\lambda \in \Lambda_{G}$ the pull back $f^{*}\left(\mathbf{L}_{\lambda}\right)$ has degree $\langle\lambda, \mu\rangle$. We denote

$$
\stackrel{\circ}{Z}^{\mu}:=\left\{f: \mathbb{P}^{1} \rightarrow \mathfrak{B} \mid \operatorname{deg}(f)=\mu, f(\infty)=B_{-}\right\} .
$$

It is known to be a smooth algebraic variety.
Example 2.2. Suppose $G=S L_{2}$, then $\mathfrak{B} \simeq \mathbb{P}^{1}, B_{-}$is ∞ and Λ_{G} identifies with \mathbb{Z}. We fix $n \in \mathbb{Z}$. The map from \mathbb{P}^{1} to \mathbb{P}^{1} of degree n that sends ∞ to ∞ is given by $(x: y) \mapsto(P(x, y): Q(x, y))$ for some homogeneous polynomials P, Q of degree n having no common roots. We set $t:=\frac{y}{x}$ and consider the corresponding polynomials $P(t), Q(t)$. The condition $f(\infty)=\infty$ is equivalent to $\operatorname{deg}(Q(t))>\operatorname{deg}(P(t))$.

Remark 2.3. Set $k:=\operatorname{deg}(Q(x, y))=\operatorname{deg}(P(x, y))$. Morphism $(x: y) \mapsto(P(x, y):$ $Q(x, y)$ corresponds to the morphism $\mathcal{O}(-k) \rightarrow \mathcal{O} \oplus \mathcal{O}$ given by (P, Q), hence $k=n$.

It follows that the space \tilde{Z}^{n} is isomorphic to the space

$$
\{(P, Q) \mid \operatorname{deg}(Q)=n, \operatorname{deg}(P)<n, Q \text { is monomial, } \operatorname{gcd}(P, Q)=1\}
$$

If we drop the last condition we will obtain so-called Zastava space to be denoted \tilde{Z}^{n} that is isomorphic to $\mathbb{A}^{2 n}$ in our situation.

Let us point out that the map $\mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ of degree n is the same as a line subbundle $\eta: \mathcal{L} \hookrightarrow \mathcal{O} \oplus \mathcal{O}$, hence, $\mathcal{L} \simeq \mathcal{O}(-n)$ and the morphism η is given by (P, Q). The condition $\operatorname{gcd}(P, Q)=1$ precisely means that the morphism η is an embedding of line bundles.

Dropping this condition we obtain the following moduli space:

$$
\{\eta: \mathcal{L} \hookrightarrow \mathcal{O} \oplus \mathcal{O} \mid \operatorname{deg}(\mathcal{L})=-n, \eta \text { is an embedding of coherent sheaves }\}
$$

such that on the fiber at ∞ image of $\left.\eta\right|_{\infty}$ is the line $(0, c) \subset \mathbb{C} \oplus \mathbb{C}$.
Let us also note that the space \tilde{Z}^{n} comes equipped with the natural (factorization) morphism $\pi_{n}: \tilde{Z}^{n} \rightarrow S^{n}\left(\mathbb{A}^{1}\right) \simeq \mathbb{A}^{1}$ to the n-th symmetric power of \mathbb{A}^{1}. It sends (P, Q) to the set of roots of Q computed with multiplicities. More geometrically this is the divisor $f^{-1}(0) \subset \mathbb{P}^{1}$ (recall that f is our map from \mathbb{P}^{1} to \mathbb{P}^{1}).

Let us now define zastava spaces for a general curve X (again we start from $G=S L_{2}$ case).
$Z^{n}:=\left\{\mathcal{L} \xrightarrow{\eta} \mathcal{E} \xrightarrow{\zeta} \mathcal{O} \mid \operatorname{deg}(\mathcal{L})=-n, \zeta \circ \eta\right.$ is generically isomorphism, $\Lambda^{2}(\mathcal{E})$ is trivialized. $\}$
When we say that the morphism $\zeta \circ \eta$ is generically isomorphism we mean that there are only finitely number of points of X in which our morphism is not an isomorphism (and hence zero). In other words it means that the morphism $\zeta \circ \eta: \mathcal{L} \rightarrow \mathcal{O}$ corresponds to a divisor $D \subset X$ of degree n. We obtain the factorization morphism $Z^{n} \rightarrow X^{(n)}$, where $X^{(n)}=: S^{n}(X)$.
Remark 2.4. The difference between Z^{n} and \tilde{Z}^{n} is the following. For $X=\mathbb{P}^{1}$ we have the factorization morphism $Z^{n} \rightarrow\left(\mathbb{P}^{1}\right)^{(n)}$, after restricting it to $\left(\mathbb{A}^{1}\right)^{(n)}$ we obtain \tilde{Z}^{n}.

We can now proceed to the definition of Z^{μ} for arbitrary reductive group G and a cocharacter $\mu \in \Lambda_{G}$. We will do it via Tannakian formalism (in the spirit of the definition of the flag variety via functor of points and Plücker relations):

For $\lambda^{\vee} \in \Lambda^{\vee}$, let $\mathbb{C}^{\lambda^{\vee}}$ be the one-dimensional representation of T via character $\lambda^{\vee}: T \rightarrow \mathbb{C}^{\times}$. Let Z^{μ} be the moduli space of the following data:

1) a G-bundle \mathcal{E} on X,
2) a T-bundle \mathcal{T} on X of degree $-\mu$,
3) for every $\lambda^{\vee} \in \Lambda^{\vee+}$, a morphism of coherent sheaves $\mathbb{C}_{\mathcal{T}}^{\lambda^{\vee}} \xrightarrow{\eta_{\lambda} \vee} \mathcal{V}_{\varepsilon}^{\lambda^{\vee}}$ and a surjective morphism of vector bundles $\mathcal{V}_{\varepsilon}^{\lambda^{\vee}} \xrightarrow{\zeta_{\lambda} \vee} \mathcal{O}_{S \times X}$ satisfying the following conditions:
a) for every $\lambda^{\vee} \in \Lambda^{\vee+}$ the composition $\left(\zeta_{\lambda \vee} \circ \eta_{\lambda \vee}\right)$ is an isomorphism generically,
the Plücker relations hold (this is exactly a reformulation of Plücker equations for flag varieties in families:
b) For every $\lambda^{\vee}, \mu^{\vee} \in \Lambda^{\vee+}$ let $\operatorname{pr}_{\lambda^{\vee}, \mu^{\nu}}: V^{\lambda^{\vee}} \otimes V^{\mu^{\vee}} \rightarrow V^{\lambda^{\vee}+\mu^{\vee}}$ be the projection morphism. We have the corresponding morphisms

$$
\operatorname{pr}_{\lambda^{v}, \mu^{\nu}}^{\varepsilon}: V_{\varepsilon}^{\nu^{\vee}} \otimes \mathcal{V}_{\varepsilon}^{\mu^{\vee}} \rightarrow V_{\varepsilon}^{\lambda^{\vee}+\mu^{\vee}}
$$

Then the following diagrams are commutative:

$$
\begin{aligned}
& \begin{array}{cl}
\mathcal{O}_{U} \otimes \mathcal{O}_{U} \quad \xrightarrow{\mathrm{Id} \otimes \mathrm{Id}} & \mathcal{O}_{U} \\
\|_{\eta_{\lambda v} \otimes \eta_{\mu^{V}}} & \\
\|^{\eta_{\lambda v}+\mu^{v}}
\end{array} \\
& \left.\left.\left(\mathcal{V}_{\varepsilon}^{\lambda^{\vee}} \otimes \mathcal{V}_{\varepsilon}^{\mu^{\vee}}\right)\right|_{U} \xrightarrow{\operatorname{pr}_{\lambda^{\nu}, \mu^{\nu}}^{\varepsilon} \mid U}\left(\mathcal{V}_{\varepsilon}^{\lambda^{\vee}+\mu^{\vee}}\right)\right|_{U}, \\
& \left.\left.\left(\mathcal{V}_{\varepsilon}^{\lambda^{\vee}} \otimes \mathcal{V}_{\varepsilon}^{\mu^{\vee}}\right)\right|_{U} \xrightarrow{\operatorname{pr}_{\lambda^{\vee}, \mu^{\vee}}^{\varepsilon} \mid U}\left(\mathcal{V}_{\varepsilon}^{\lambda^{\vee}+\mu^{\vee}}\right)\right|_{U} \\
& \downarrow \zeta_{\lambda V} \otimes \zeta_{\mu} V \quad \zeta_{\lambda V+\mu^{V}} \\
& \mathcal{O}_{U} \otimes \mathcal{O}_{U} \quad \xrightarrow{\mathrm{Id} \otimes \mathrm{Id}} \quad \mathcal{O}_{U} .
\end{aligned}
$$

c) Given a morphism pr: $V^{\lambda^{\vee}} \otimes V^{\mu^{\vee}} \rightarrow V^{\nu^{\vee}}$ for $\lambda^{\vee}, \mu^{\vee}, \nu^{\vee} \in \Lambda^{\vee+}, \nu^{\vee}<\lambda^{\vee}+\mu^{\vee}$, we have

$$
\operatorname{pr}^{\varepsilon} \circ\left(\eta_{\lambda^{\vee}} \otimes \eta_{\mu^{\vee}}\right)=0,\left(\zeta_{\lambda^{v}} \otimes \zeta_{\mu^{\vee}}\right) \circ \operatorname{pr}^{\varepsilon}=0 .
$$

d) For $\lambda^{\vee}=0$ we have $\zeta_{\lambda v}=\mathrm{Id}$ and $\eta_{\lambda^{v}}=\mathrm{Id}$.

Remark 2.5. If we require morphisms $\eta_{\lambda \vee}$ to be embeddings of vector bundles we will obtain the open zastava $\stackrel{\circ}{Z}^{\mu}$, if we do not require morphisms $\zeta_{\lambda^{v}}$ to be surjective we will obtain compactified zastava spaces \bar{Z}^{μ}.
Remark 2.6. Let us give another definition of the spaces $\stackrel{\circ}{Z}^{\mu}\left(Z^{\mu}\right)$. It is the moduli space of B-structures Ψ of degree μ in the trivial G-bundle $\mathcal{E}^{\text {triv }}$ where \mathcal{E} is a G-bundle, Ψ^{+}is a B-structure of degree μ in \mathcal{E}, Ψ^{-}is a B_{-}-structure of degree 0 in \mathcal{E} such that these two structures are generically transversal.

Example 2.3. Again suppose $G=S L_{2}$. Then B-structure in the trivial $S L_{2}$-bundle is the same as an embedding $\eta: \mathcal{L} \hookrightarrow \mathcal{O} \oplus \mathcal{O}$ such that $\operatorname{deg}(\mathcal{L})=n$. Standard U_{-} structure corresponds to the surjection $\zeta: \mathcal{O} \oplus \mathcal{O} \rightarrow \mathcal{O}$ onto the second component. The transversality condition is simply a fact that $\pi \circ v$ is an isomorphism everywhere except the finite number of points. It follows that this morphism is isomorphic to
$\mathcal{O}(-D) \hookrightarrow \mathcal{O}$ for some divisor D. Thus, we obtain a morphism $\check{Z}^{n} \rightarrow S^{n}\left(\mathbb{A}^{1}\right)$. It is called a factorization morphism.
2.6.1. Factorization morphism. For $\alpha \in \Lambda_{G}^{+}$, let $\alpha=\sum n_{i} \alpha_{i}$. For a curve X, set $X^{(\alpha)}:=\Pi X^{\left(n_{i}\right)}$. In the same way as in the Example 2.2 we obtain a factorization morphism $\pi_{\alpha}: Z^{\alpha} \rightarrow X^{(\alpha)}$. Fix an element $D \in X^{(\alpha)}$, it can be written as $\sum \alpha_{i} \cdot D_{i}$, where $\operatorname{deg}\left(D_{i}\right)=n_{i}$. It follows that for any character $\lambda^{\vee} \in \Lambda_{G}^{+}$we have a divisor $\sum\left\langle\lambda^{\vee}, \alpha_{i}\right\rangle D_{i}$. We will say that two elements $D, D^{\prime} \in X^{(\alpha)}$ are disjoint if for any λ^{\vee}, the corresponding divisors are disjoint. Factorization morphism has the following property: for a decomposition $\alpha=\alpha_{1}+\alpha_{2}$ and two disjoint divisors $D_{1} \in X^{\left(\alpha_{1}\right)}, D_{2} \in X^{\left(\alpha_{2}\right)}$ we have the natural isomorphism

$$
\pi_{\alpha_{1}}^{-1}\left(D_{1}\right) \times \pi_{\alpha_{2}}^{-1}\left(D_{2}\right) \simeq \pi_{\alpha}^{-1}\left(D_{1}+D_{2}\right)
$$

Example 2.4. Again for $G=S L_{2}$ the factorization property simply says that any fraction $\frac{P}{Q_{1} \cdot Q_{2}}$ with Q_{1} and Q_{2} having no common root can be uniquely presented as $\frac{P_{1}}{Q_{1}}+\frac{P_{2}}{Q_{2}}$.
Proposition 2.5. Fix a point $x \in X$ and consider a divisor $\alpha \cdot x \in X^{(\alpha)}$, then the fiber $\mathcal{F}^{\alpha}:=\pi_{\alpha}^{-1}(\alpha \cdot x)$ is isomorphic to the intersection $\bar{S}_{\alpha} \cap T_{0}$.
Remark 2.7. Taking a fiber over $\alpha \cdot x$ for open zastava we obtain the intersection $S_{\alpha} \cap T_{0}$, for compactified zastava we get $\bar{S}_{\alpha} \cap \bar{T}_{0}$.
2.8. Comultiplication via factorization. Recall the morphism $\pi_{\mu}: Z^{\mu} \rightarrow X^{(\mu)}$. We fix a decomposition $\alpha=\alpha_{1}+\alpha_{2}$ and consider the natural embedding

$$
X \hookrightarrow X^{(\mu)}, y \mapsto\left(\mu_{1} \cdot x+\mu_{2} \cdot y\right) .
$$

After restricting the factorization morphism to \mathbb{A}^{1}, we obtain a family $\pi_{\mu}^{-1}(X) \rightarrow X$ with zero fiber equal to \mathcal{F}^{μ} and the fiber over $y \in X \backslash\{x\}$ equal to $\mathcal{F}^{\mu_{1}} \times \mathcal{F}^{\mu_{2}}$.
2.9. Cospecialization construction. Let $\pi: S \rightarrow X$ be a one-parameter family over X, and assume that this family is trivial over $X \backslash\{0\}$ i.e. $\left.\pi^{-1}(X \backslash\{x\}) \simeq S\right|_{y} \times$ ($X \backslash\{x\}$) for some $y \neq x$. Then for any constructible complex F on S there exists a cospecialization map $H_{c}^{*}\left(\left.S\right|_{x},\left.F\right|_{x} ^{*}\right) \rightarrow H_{c}^{*}\left(\left.S\right|_{y},\left.F\right|_{y} ^{*}\right)$.
Remark 2.10. Cospecialization morphism is constructed as follows. Consider complex $\pi_{!}(F)$ on X. The restriction $\left.\pi_{!}(F)\right|_{X \backslash\{x\}}$ identifies with $\left(\left.\pi_{!} F\right|_{1}\right) \boxtimes \mathbb{C}_{X \backslash\{0\}}$. To construct the desired morphism we may suppose that F is a sheaf. It is also enough to construct a map $\pi_{!}(F)_{0} \rightarrow \pi_{!}(F)_{1}$. We fix now an element $s \in \pi_{!}(F)_{0}$, it is represented by a section $s_{U} \in \pi_{!}(F)(U)$ for some open set containing $\{x\}$. Now we fix any point $t \in U$ such that $t \neq x$. The restriction $\left(s_{U}\right)_{t}$ defines an element of $\left.\left.\pi_{!}(F)\right|_{t} \simeq \pi_{!}(F)\right|_{y}$, hence, we obtain an element of $\left.\pi_{!}(F)\right|_{y}$. Correctness is obvious.
Remark 2.11. More generally, given a stratified variety S and a complex F on S which is constant on the strata, there exists a natural cospecialization map $\left.\left.F\right|_{s} ^{*} \rightarrow F\right|_{t} ^{*}$ whenever the stratum containing point s lies in the closure of the stratum containing the point t.

Cospecialization construction gives us a morphism $\mathcal{A}_{\mu} \rightarrow \mathcal{A}_{\mu_{1}} \otimes \mathcal{A}_{\mu_{2}}$. By summing over for all μ we obtain the comultiplication morphism $\Delta: \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A}$.
2.12. Schieder's deformation. We have constructed comultiplication morphism (it was standard), now we are going to construct a multiplication morphism by constructing another deformation of $\mathcal{F}^{\mu}=\bar{S}_{\mu} \cap T_{0}$. Let us again start from the case $G=S L_{2}$, consider the following moduli space:

$$
Y^{n}:=\left\{\mathcal{L} \xrightarrow{\eta} \varepsilon_{1} \xrightarrow{\varphi} \varepsilon_{2} \xrightarrow{\zeta} \mathcal{O} \mid \operatorname{deg}(\mathcal{L})=-n, \zeta \circ \varphi \circ \eta \text { is an isomorphism generically }\right\},
$$ η is an embedding of vector bundles, ζ is a surjection.

There exists a natural morphism $v: Y^{n} \rightarrow \mathbb{A}^{1}$ that sends (η, φ, ζ) to $\operatorname{det}(\varphi)$. We note now that the fiber over any point $t \neq 0$ identifies with $\stackrel{\circ}{Z}^{n}$, hence, we obtain a deformation of zastava. Let us describe the fiber over zero. Note that we still have a factorization morphism $Y^{n} \rightarrow X^{(n)}$ that sends (η, φ, ζ) to the divisor that corresponds to the composition $\zeta \circ \varphi \circ \eta$. Denote by \mathfrak{Y}^{n} the fiber over $n \cdot 0$. It consists of the data $\mathcal{O}(-n \cdot 0) \xrightarrow{\eta} \mathcal{E}_{1} \xrightarrow{\varphi} \mathcal{E}_{2} \xrightarrow{\zeta} \mathcal{O}$ it maps to \mathbb{A}^{1} via $\operatorname{det}(\varphi)$, let us describe the fiber over 0 . We have $\operatorname{det}(\varphi)=0$, hence, the morphism φ may be decomposed as $\mathcal{E}_{1} \xrightarrow{\zeta^{\prime}} \mathcal{O}\left(-n^{\prime}\right) \xrightarrow{\eta^{\prime}} \mathcal{E}_{2}$ for some n. We note now that the data $\mathcal{O}(-n) \xrightarrow{\eta} \mathcal{E}_{1} \xrightarrow{\zeta^{\prime}} \mathcal{O}\left(-n^{\prime}\right)$ defines a point of $\mathcal{F}^{n-n^{\prime}}$ and the data of $\mathcal{O}\left(-n^{\prime}\right) \xrightarrow{\eta^{\prime}} \mathcal{E}_{1} \xrightarrow{\zeta} \mathcal{O}$ defines a point of $\mathcal{F}^{n^{\prime}}$, hence we obtain the isomorphism $\left.\mathfrak{Y}^{n}\right|_{0} \simeq \bigcup_{n_{1}+n_{2}=n} \mathcal{F}^{n_{1}} \times \mathcal{F}^{n_{2}}$, hence, applying cospecialization construction we obtain a morphism

$$
\bigoplus_{n_{1}+n_{2}=n} H_{c}^{\mathrm{top}}\left(\mathcal{F}_{n_{1}}, \mathbb{C}\right) \otimes H_{c}^{\mathrm{top}}\left(\mathcal{F}_{n_{2}}, \mathbb{C}\right)=\bigoplus_{n_{1}+n_{2}=\alpha} \mathcal{A}_{n_{1}} \otimes \mathcal{A}_{n_{2}} \rightarrow \mathcal{A}_{n l}=H_{c}^{\mathrm{top}}\left(\mathcal{F}_{n}, \mathbb{C}\right)
$$

Summing over all n we obtain a multiplication morphism $\mathbf{m}: \mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A}$.
It was an $S L_{2}$-case, the general case may be treated as follows. We set $\stackrel{\circ}{Z}_{Z}:=\bigsqcup_{\mu} \overbrace{}^{\mu}$. This space classifies pairs of B-structure and U_{-}-structure in the trivial bundle \mathcal{E} that are generically transversal.

Note that it is isomorphic to the following space of maps: $\stackrel{\circ}{Z}=\operatorname{Maps}_{\text {gen }}(X, G /(B \times$ $\left.\left.U_{-}\right) \supset \mathrm{pt}\right)$, here U_{-}is a unipotent radical of B_{-}and by $\operatorname{Maps}_{\operatorname{gen}}\left(X, S \supset S_{0}\right)$ we mean such maps $X \rightarrow S$ that generically go to S_{0}. We want to deform this space. To do so, we can deform the group G.
2.12.1. Vinberg semigroup. Let r be the rank of G. There exists a semigroup to be denoted Vin_{G} equipped with a morphism $v: \operatorname{Vin}_{G} \rightarrow \mathbb{A}^{r}$ such that a fiber over any point $\left(c_{1}, \ldots, c_{r}\right)$ with all c_{i} nonzero is isomorphic to G. This family also has a section $s: \mathbb{A}^{r} \rightarrow \operatorname{Vin}_{G}$.

Example 2.6. For $G=S L_{2}$ we have $\operatorname{Vin}_{G}=\operatorname{Mat}_{2 \times 2}$ and the morphism v simply sends A to $\operatorname{det}(A), s$ sends c to $\operatorname{diag}(1, c)$.
Remark 2.13. Vinberg semigroup can be constructed as follows. Recall that the algebra of functions $\mathbb{C}[G]$ admits a natural multifiltration by the character lattice Λ_{G}. By the definition, Vin_{G} is the spectrum of the Rees algebra with respect to this filtration.

Denote by $\operatorname{Vin}_{G}^{\text {Bruhat }}$ the $B \times U_{-}$-orbit of the section $s\left(\mathbb{A}^{r}\right)$ and finally define $Y:=$ $\operatorname{Maps}_{\text {gen }}\left(X, \operatorname{Vin}_{G} /\left(B \times U_{-}\right) \supset \operatorname{Vin}_{G}^{\text {Bruhat }} /\left(B \times U_{-}\right)\right.$.

The scheme Y^{μ} can be described in the following Tannakian way:

1) two right G-torsors $\mathcal{E}_{1}, \mathcal{E}_{2}$ on X,
2) for every $\lambda^{\vee} \in \Lambda^{\vee+}$ a morphism $\varphi_{\lambda^{\vee}}: \mathcal{V}_{\varepsilon_{1}}^{\lambda^{\vee}} \rightarrow \mathcal{V}_{\varepsilon_{2}}^{\lambda^{\vee}}$,
3) for every $\mu^{\vee} \in \Lambda_{+}^{\vee}$ a number $c_{\mu^{\vee}}$,
4) a T-bundle \mathcal{T} on X of degree $-\mu$,
5) for every $\lambda^{\vee} \in \Lambda^{\vee+}$, morphisms of vector bundles

$$
\eta_{\lambda^{\nu}}^{\nu}: \mathbb{C}_{\mathcal{T}}^{\lambda^{v}} \hookrightarrow \mathcal{V}_{\varepsilon_{1}}^{\lambda^{v}}, \zeta_{\lambda^{v}}: \mathcal{V}_{\varepsilon_{2}}^{\lambda^{v}} \rightarrow \mathcal{O}_{X},
$$

satisfying the following conditions:
a) for every $\lambda^{\vee} \in \Lambda^{\vee+}$, the composition

$$
\zeta_{\lambda^{v}} \circ \eta_{\lambda^{v}}: \mathbb{C}_{\mathcal{T}}^{\lambda^{v}} \rightarrow \mathcal{O}_{X}
$$

is an isomorphism generically.
b) The Plücker relations hold.
c) For any $\mu_{1}^{\vee}, \mu_{2}^{\vee} \in \Lambda_{+}^{\vee}$ we have $c_{\mu_{1}^{\vee}} c_{\mu_{2}^{\vee}}=c_{\mu_{1}^{\vee}+\mu_{2}^{\vee}}$.
d) For any $\lambda_{1}^{\vee}, \lambda_{2}^{\vee}, \nu^{\vee} \in \Lambda^{\vee+}$ such that $V^{\nu^{\vee}}$ enters $V^{\lambda_{1}^{\vee}} \otimes V^{\lambda_{2}^{\vee}}$ with nonzero multiplicity, we denote by $\iota: W^{\nu^{\nu}} \hookrightarrow V^{\lambda_{1}^{\vee}} \otimes V^{\lambda_{2}^{V}}$ the embedding of the corresponding isotypical component and by pr: $V^{\lambda_{1}^{V}} \otimes V^{\lambda_{2}^{V}} \rightarrow W^{\nu^{\vee}}$ the corresponding projection. We denote by $\iota^{\varepsilon_{1}}, \operatorname{pr}^{\varepsilon_{2}}$ the corresponding morphisms between the induced vector bundles. Then we have

$$
\operatorname{pr}^{\varepsilon_{2}} \circ\left(\varphi_{\lambda_{1}^{\vee}} \otimes \varphi_{\lambda_{2}^{\vee}}\right) \circ \iota^{\varepsilon_{1}}=\left(c_{\lambda_{1}^{\vee}+\lambda_{2}^{\vee}-\nu^{\vee}}\right) \cdot \varphi_{\nu^{\vee}} .
$$

e) The morphism φ_{0} coincides with the identity morphism, and the morphism τ_{0} coincides with the identity morphism.

We have a natural morphism $Y^{\mu} \rightarrow \mathbb{A}^{r}$, we will denote by the same symbol $\left(Y^{\mu}\right)$ the restriction of this deformation to the diagonal $\mathbb{A}^{1} \hookrightarrow \mathbb{A}^{r}$.

Remark 2.14. Variety Y^{α} is irreducible.
Remark 2.15. The morphism v is flat. To see that we note that v is surjective and Y^{α} is irreducible. Note also that the morphism v is not smooth in general.
2.16. Multiplication via Schieder degeneration. We have the factorization morphism $Y^{\alpha} \rightarrow X^{(\alpha)}$ we denote by \mathfrak{Y}^{α} the preimage of $\alpha \cdot 0$. Consider the restriction $\left.v\right|_{\mathfrak{Y}}{ }^{\alpha}: \mathfrak{Y}^{\alpha} \rightarrow \mathbb{A}^{1}$. The fibers $\left.\mathfrak{Y}^{\alpha}\right|_{t}$ for $t \neq 0$ are isomorphic to \mathcal{F}^{α}. The fiber over 0 naturally identifies with the union $\bigcup_{\alpha_{1}+\alpha_{2}=\alpha} \mathcal{F}_{\alpha_{1}} \times \mathcal{F}_{\alpha_{2}}$, hence, applying cospecialization construction we obtain a morphism

$$
\bigoplus_{\alpha_{1}+\alpha_{2}=\alpha} H_{c}^{\mathrm{top}}\left(\mathcal{F}_{\alpha_{1}}, \mathbb{C}\right) \otimes H_{c}^{\mathrm{top}}\left(\mathcal{F}_{\alpha_{2}}, \mathbb{C}\right)=\bigoplus_{\alpha_{1}+\alpha_{2}=\alpha} \mathcal{A}_{\alpha_{1}} \otimes \mathcal{A}_{\alpha_{2}} \rightarrow \mathcal{A}_{\alpha}=H_{c}^{\mathrm{top}}\left(\mathcal{F}_{\alpha}, \mathbb{C}\right) .
$$

Summing over all α we obtain a multiplication morphism m: $\mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A}$.

3. Construction of the action

Example 3.7. Recall that the space Z^{n} coincides with the following set:

$$
\left\{\left.M=\left(\begin{array}{ll}
P & P^{\prime} \\
Q & Q^{\prime}
\end{array}\right) \right\rvert\, \operatorname{det}(M)=1, Q \text { is monomial of degree } n, \operatorname{deg}(P)<n\right\}
$$

We have the natural deformation:
$Y^{n}:=\left\{\left.M=\left(\begin{array}{cc}P & P^{\prime} \\ Q & Q^{\prime}\end{array}\right) \right\rvert\, \operatorname{det}(M) \in \mathbb{C}, Q\right.$ is monomial of degree $\left.n, \operatorname{deg}(P)<n\right\}$
equipped with a morphism $Y^{n} \rightarrow \mathbb{A}^{1}, M \mapsto \operatorname{det}(M)$. This is exactly Shieder's degeneration!

We now fix a perverse sheaf $\mathcal{P} \in \operatorname{Perv}_{G(\mathcal{O})}\left(\operatorname{Gr}_{G}\right)$ and recall a bialgebra \mathcal{A} of the last Section. We set $V:=H^{*}\left(\operatorname{Gr}_{G}, \mathcal{P}\right)$. Our goal is to construct an action $\mathcal{A} \curvearrowright V$. To do so, we first recall that $V=\bigoplus_{\mu \in \Lambda_{G}} V_{\mu}-T^{\vee}$-weight decomposition and that $V_{\mu}=$ $H^{\left\langle 2 \rho^{\vee}, \mu\right\rangle}\left(S_{\mu}, \mathcal{P}\right)$, here, $2 \rho^{\vee}$ is the sum of positive roots. So, we must construct maps $\mathcal{A}_{\alpha_{1}} \otimes V_{\alpha_{2}} \rightarrow V_{\alpha}, \alpha=\alpha_{1}+\alpha_{2}$. We will do it by deforming ind-schemes S_{α} (we start from deforming Gr_{G} the whole Grassmannian).
3.1. Main construction. We start from the simplest case $G=S L_{2}$. The general case will be treated completely analogously via Tannakian approach. Recall that Gr_{G} is the moduli space of pairs (\mathcal{E}, σ), where \mathcal{E} is a G-bundle on X and σ is a trivialization of \mathcal{E} away from $\{x\}$. We note that this moduli space coincides with the moduli space of the following data: $\{\mathcal{O} \xrightarrow{\eta} \mathcal{E} \stackrel{\zeta}{\mathcal{O}}\}$, where η, ζ are rational morphisms with poles at zero such that $\left.(\zeta \circ \eta)\right|_{X \backslash\{x\}}=I d$. Let us comment that a rational morphism $\mathcal{O} \rightarrow \mathcal{E}$ with poles at zero is by the definition an element of the inductive limit $\lim _{\rightarrow}\{\mathcal{O}(-n \cdot 0) \rightarrow \varepsilon\}$ (for ζ the definition is analogous).

We are now ready to define our main player - the deformation of Gr_{G} :
$\widetilde{\mathrm{Gr}}_{G}:=\left\{\mathcal{O} \xrightarrow{\eta} \mathcal{E}_{1} \xrightarrow{\varphi} \mathcal{E}_{2} \xrightarrow{\zeta} \mathcal{O} \mid \eta, \zeta-\right.$ rational with pole at zero, $\left.\left.(\zeta \circ \varphi \circ \eta)\right|_{\mathbb{P}^{1} \backslash\{0\}}=I d\right\}$.
Let us define now the degeneration $\widetilde{S}_{n} \rightarrow \mathbb{A}^{1}$. To do so, we recall the modular approach to S_{n} :

$$
S_{n}=\left\{\mathcal{O}(-n \cdot 0) \xrightarrow{\eta} \mathcal{E} \xrightarrow{\zeta} \mathcal{O} \mid \zeta-\text { rational, }\left.(\zeta \circ \eta)\right|_{\left(\mathbb{P}^{1} \backslash\{0\}\right)}=I d\right\} .
$$

We now define degeneration

$$
\widetilde{S}_{n}=\left\{\mathcal{O}(-n \cdot 0) \xrightarrow{\eta} \varepsilon_{1} \xrightarrow{\varphi} \varepsilon_{2} \xrightarrow{\zeta} \mathcal{O} \mid \zeta-\text { rational },\left.(\zeta \circ \varphi \circ \eta)\right|_{\left(\mathbb{P}^{1} \backslash\{0\}\right)}=I d\right\} .
$$

Let us give the Tannakian definition of the ind-scheme $\bar{S}_{\nu} \subset \operatorname{Gr}_{G}$. The corresponding functor of points associates to a scheme S

1) a G-bundle \mathcal{E} on X,
2) for every $\lambda^{\vee} \in \Lambda^{\vee+}$, morphisms of sheaves $\eta_{\lambda^{\vee}}: \mathcal{O}_{X}\left(-\left\langle\lambda^{\vee}, \nu\right\rangle \cdot x\right) \rightarrow \mathcal{V}_{\varepsilon}^{\lambda^{\vee}}$ and rational morphisms $\zeta_{\lambda^{\vee}}: \mathcal{V}_{\varepsilon}^{\lambda^{\vee}} \rightarrow \mathcal{O}_{X}$ regular on $(X \backslash\{x\})$, satisfying Plücker relations.

The deformations $\widetilde{\mathrm{Gr}}_{G}, \widetilde{S}_{\mu}$ can be now defined analogously to Y^{μ} above.
Main property of the deformation $\widetilde{\operatorname{Gr}}_{G}$: for any $t \neq 0$, the fiber $\left.\left(\widetilde{\operatorname{Gr}}_{G}\right)\right|_{t}$ is isomorphic to Gr_{G}, for $t=0$ we have $\left.\left(\widetilde{\operatorname{Gr}}_{G}\right)\right|_{0}=\underset{\mu_{1}+\mu_{2}=\mu}{\bigcup} \bar{T}_{\mu_{1}} \times \bar{S}_{\mu_{2}}$.

Analogously, for any $t \neq 0$, the fiber $\left.\left(\widetilde{S}_{\mu}\right)\right|_{t}$ is isomorphic to S_{μ}, for $t=0$ we have $\left.\left(\widetilde{S}_{\mu}\right)\right|_{0}=\bigcup_{\mu_{1}+\mu_{2}=\mu} \mathcal{F}^{\mu_{1}} \times S_{\mu_{2}}$.
3.2. Action. To define the action via our deformation we must construct a sheaf $\widetilde{\mathcal{P}}$ on \widetilde{S}_{μ} that restricts to $\mathbb{C} \boxtimes\left(\left.\mathcal{P}\right|_{S_{\mu_{2}}}\right)$ on zero fiber and to $\left.\mathcal{P}\right|_{S_{\mu}}$ on the fiber over 1 .

To do so we start from the constructing of the closed embedding $\iota: \widetilde{S}_{\mu} \hookrightarrow \operatorname{Gr}_{G} \times \operatorname{Gr}_{G}$. It simply sends

$$
\mathcal{O} \xrightarrow{\eta} \varepsilon_{1} \xrightarrow{\varphi} \varepsilon_{2} \xrightarrow{\zeta} \mathcal{O}
$$

to the pair

$$
\left(\mathcal{O} \xrightarrow{\varphi \circ \eta} \varepsilon_{1} \xrightarrow{\zeta} \mathcal{O}, \mathcal{O} \xrightarrow{\eta} \varepsilon_{1} \xrightarrow{\varphi \circ \zeta} \mathcal{O}\right) \in \mathrm{Gr}_{G} \times \mathrm{Gr}_{G}
$$

Lemma 3.8. The morphism ι is a closed embedding.
Define $\tilde{\mathcal{P}}:=\iota^{*}\left(\left.\mathbb{C} \boxtimes \mathcal{P}\right|_{S_{\mu}}\right)$.
Remark 3.3. We note that
We have constructed a sheaf $\widetilde{\mathcal{P}}$ to \tilde{S}_{μ}. It is easy to see that the restriction $\left.\widetilde{\mathcal{P}}\right|_{\left(\widetilde{S}_{\mu}\right)_{t}}$ is isomorphic to $\left.\mathcal{P}\right|_{S_{\mu}}$ and the restriction of $\widetilde{\mathcal{P}}$ to $\mathcal{F}^{\mu_{1}} \times S_{\mu_{2}}$ is isomorphic to $\mathbb{C} \boxtimes\left(\left.\mathcal{P}\right|_{S_{\mu_{2}}}\right)$.

The cospecialization construction defines a morphism

$$
\bigoplus_{\mu_{1}+\mu_{2}=\mu} \mathcal{A}_{\mu_{1}} \otimes V_{\mu_{2}} \rightarrow V_{\mu}
$$

After summing over all μ we obtain a morphism act: $\mathcal{A} \otimes V \rightarrow V$.
Let us summarize our results:
Theorem 3.9. a) The bialgebra $(\mathcal{A}, \Delta, \mathbf{m})$ is isomorphic to the universal enveloping algebra $U\left(\mathfrak{n}^{\vee}\right)$.
b) The natural action $U\left(\mathfrak{n}^{\vee}\right) \curvearrowright V$ geometrically is given by cospecialization construction above and coincides with the morphism act after the identification $\mathcal{A} \simeq U\left(\mathfrak{n}^{\vee}\right)$.
3.4. Sketch of proof. The proof goes as follows.
3.4.1. First step. First of all we must check that the morphism act: $\mathcal{A} \otimes V \rightarrow V$ actually defines an action $\mathcal{A} \curvearrowright V$. To do so, we must show that the following diagram is commutative:

To prove this, we construct a family over \mathbb{A}^{2} and a certain complex on this family such that the composition acto $(\mathbf{m} \otimes \mathrm{Id})$ coincides with the cospecialization morphism for this complex from $(0,0)$ to $(1,0)$ and then to $(1,1)$. On the other hand the composition act $\circ(\mathrm{Id} \otimes$ act $)$ coincides with the cospecialization morphism for our complex from $(0,0)$ to $(0,1)$ and then to $(1,1)$.

Recall now that given a stratified variety S and a complex F on S which is constant on the strata, there exists a natural cospecialization map $\left.\left.F\right|_{s} ^{*} \rightarrow F\right|_{t} ^{*}$ whenever the stratum containing point s lies in the closure of the stratum containing the point t.

We note now that both the compositions of cospecializations above tautologically coincide with the cospecialization morphism from $(0,0)$ to $(1,1)$ in the whole family over \mathbb{A}^{2}.
3.4.2. Second step. Our aim now is to prove that the action that we have constructed comes from the natural action $U\left(\mathfrak{g}^{\vee}\right) \curvearrowright V$ i.e. that there exists a morphism of algebras $\mathcal{A} \rightarrow U\left(\mathfrak{g}^{\vee}\right)$ that commutes with our actions. From the general Tannakian formalism, to do so it is enough to prove that our action is compatible with the tensor structure on $\operatorname{Rep}\left(G^{\vee}\right)$ i.e. that for any two finite-dimensional G^{\vee}-modules V, W the following diagram is commutative:

where the morphism $\tau: \mathcal{A} \otimes V \rightarrow V \otimes \mathcal{A}$ sends $a \otimes b$ to $b \otimes a$. For proving it we again construct a two-parametric family and a complex such that both compositions in our diagram coincide with the cospecialization morphism from $(0,0)$ to $(1,1)$. Let us briefly describe the construction. Again let us do it for $S L_{2}$, in general case we just have to use a Tannakian approach. Recall that the family \widetilde{S}_{n} that gave us the action $\mathcal{A} \curvearrowright V$ was the moduli space
$\widetilde{S}_{n}=\left\{\mathcal{O}(-n \cdot 0) \xrightarrow{\eta} \varepsilon_{1} \xrightarrow{\varphi} \varepsilon_{2} \xrightarrow{\zeta} \mathcal{O} \mid \zeta-\right.$ can have poles at zero, $\left.\left.(\zeta \circ \varphi \circ \eta)\right|_{\mathbb{P}^{1} \backslash\{0\}}=\mathrm{Id}\right\}$.
We now deform it in the following way:

$$
\begin{aligned}
& \widetilde{\widetilde{S}}_{n}=\left\{\mathcal{O}(-n \cdot 0) \xrightarrow{\eta} \mathcal{E}_{1} \xrightarrow{\varphi_{1}} \mathcal{E}_{2} \xrightarrow{\varphi_{2}} \varepsilon_{3} \xrightarrow{\zeta} \mathcal{O} \mid\right. \\
&\left.\mid \zeta-\text { can have poles at zero, }\left.\left(\zeta \circ \varphi_{1} \circ \varphi_{2} \circ \eta\right)\right|_{\mathbb{P}^{1} \backslash\{0\}}=\mathrm{Id}\right\} .
\end{aligned}
$$

We obtain the desired two-parametric family, the morphism $\tilde{\pi}: \widetilde{\widetilde{S}}_{n} \rightarrow \mathbb{A}^{2}$ is given by $\left(\eta, \varphi_{1}, \varphi_{2}, \zeta\right) \mapsto\left(\operatorname{det} \varphi_{1}\right.$, $\left.\operatorname{det} \varphi_{2}\right)$. We have a natural closed embedding $\tau: \widetilde{\widetilde{S}}_{n} \hookrightarrow$ $\operatorname{Gr}_{G} \times \mathrm{Gr}_{G} \times \mathrm{Gr}_{G}$ and we consider a complex $\tilde{\tilde{\mathcal{P}}}:=\widetilde{\iota}^{*}(\mathbb{C} \boxtimes \mathbb{C} \boxtimes \mathcal{P})$.

After obtaining a morphism $U(\mathfrak{a}) \rightarrow U\left(\mathfrak{g}^{\vee}\right)$ it is easy to see that it is injective and graded dimensions coincide, hence, we obtain the isomorphism.

Remark 3.5. According to the Tannakian formalism, group G^{\vee} coincides with the group of (tensor) authomorphisms of the fiber functor. Analogously, the Lie algebra \mathfrak{g}^{\vee} coincides with the set of endomorphisms E of the fiber functor F such that for any V, W the following diagram is commutative:

We now consider the Lie algebra $\mathfrak{a} \subset \mathcal{A}$, consisting of primitive elements. It follows from 3.1 and the observation above that we have a Lie algebra homomorphism $\mathfrak{a} \rightarrow \mathfrak{g}^{\vee}$ that induces a morphism $U(\mathfrak{a}) \rightarrow U\left(\mathfrak{g}^{\vee}\right)$.

4. Possible generalizations and Drinfeld-Gaitssgory deformations

4.1. Drinfeld-Gaitsgory interpolation. Let us start this Section from one general construction due to Drinfeld-Gaitsgory. Let Z be an algebraic variety equipped with a \mathbb{C}^{\times}-action. Let us also denote by \mathbb{X} the variety \mathbb{A}^{2} with the following action of \mathbb{C}^{\times}: $(x, y) \mapsto\left(t x, t^{-1} y\right.$. Note that the natural morphism $\mathbb{X} \rightarrow \mathbb{A}^{1}$ that sends (x, y) to $x y$ is equivariant with respect to the trivial \mathbb{C}^{\times}-action on \mathbb{A}^{1}.

Let us define a scheme $\widetilde{Z}^{\text {dg }}$ (it will be certain scheme over \mathbb{A}^{1}). Fix an \mathbb{A}^{1}-scheme S. Define $\operatorname{Maps}_{\mathbb{A}^{1}}\left(S, \widetilde{Z}^{\mathrm{dg}}\right):=\operatorname{Maps}(S \times \mathbb{X}, Z)_{\mathbb{A}^{1}}^{\mathbb{G}_{m}}$.
4.1.1. Main properties. By the definition we have a morphism $\widetilde{Z}^{\mathrm{dg}} \rightarrow \mathbb{A}^{1}$. We denote by $\widetilde{Z}_{t}^{\text {dg }}$ the fiber over zero.
Proposition 4.10. 1) We have $\widetilde{Z}_{t}^{\mathrm{dg}} \simeq Z$ for $t \neq 0$.
2) We have $\widetilde{Z}_{0}^{\mathrm{dg}} \simeq Z^{+} \underset{Z^{\mathbb{C}}}{\times} Z^{-}$, where $Z^{+}:=\left\{x \in Z \mid \exists \lim _{t \rightarrow 0} t \cdot x\right\}$
4.2. Drinfeld-Gaitsgory interpolation of Gr_{G}. Recall the reductive group G, maximal torus $T \subset G$ and the affine Grassmannian Gr_{G}, consider the \mathbb{C}^{\times}-action via $2 \rho: \mathbb{C}^{\times} \rightarrow T$, here T acts by left multiplication. We obtain the interpolation $\widetilde{\mathrm{Gr}}_{G}^{\mathrm{dg}}$.

Relation between $\widetilde{\mathrm{Gr}}_{G}^{\mathrm{dg}}$ and $\widetilde{\mathrm{Gr}}_{G}$ is the following. There exists an open embedding $\widetilde{\mathrm{Gr}}_{G}^{\mathrm{dg}} \hookrightarrow \widetilde{\mathrm{Gr}}_{G}$ that is isomorphism away from zero fiber, on the level of zero fiber it coincides with the natural embedding $\bigsqcup_{\mu} T_{\mu} \times S_{\mu} \hookrightarrow \bigcup_{\mu} \bar{T}_{\mu} \times \bar{S}_{\mu}$.

5. Questions

5.1. Quantum universal enveloping algebra. Is it possible to geometrically construct $U_{q}\left(\mathfrak{n}^{\vee}\right)$ in the same manner?
5.2. Drinfeld-Gaitsgory interpolations. General Drinfeld-Gaitsgory interpolation construction?
5.3. Kac-Moody Lie algebras. Generalization to affine (Kac-Moody) Lie algebras?

