TALK ON DRINFELD-GAITSGORY INTERPOLATION
GRASSMANNIAN AND GEOMETRIC SATAKE EQUIVALENCE

1. AFFINE GRASSMANNIAN AND GEOMETRIC SATAKE

Let G be a reductive algebraic group over C and T' C G is a maximal torus. We
assume for the latter that [G, G] is simply connected (for simplicity). Set K := C((z)),
O := CJ[z]]. Define Grg := G(X)/G(0). This is and ind-projective scheme called
affine Grassmannian of G. Let X be a smooth projective curve over C (for example
X = P!). We fix a point z € X (0 € P!). It is known that Grg has the following
moduli description:

Gra ~ {(€,0)|0: &[x\(a} ~ €™ x\(u} ]+
where €V is a tr Consider the action G(O) ~ Grg = G(X)/G(0) via left multiplica-
tion (changing the trivialization).
Remark 1.1. Fix a maximal torus T C G, let Ag (Af) be the lattice (submonoid) of

cocharacters (dominant cocharacters) of T'C G. Any A € Ag gives rise to the element
2 € Grg. We set Gryy := G(0) - 2*. We have the following (Cartan) decomposition:

Grg = I_I GI)G\’-

+
AeA;

Let Pervg)(Grg) be the category of G(0O)-equivariant perverse sheaves on Grg.
This abelian category has a Tannakian structure — tensor product comes from the
convolution and fiber functor simply sends a sheaf P to the global cohomology
V = H*(Grg,P). Geometric Satake isomorphism (to be denoted Sg) identifies
Pervg(y(Grg) and Rep(GY) as Tannakian categories, here GV is the Langlands dual
group to G:

Sa

Perve o) (Grg) Rep(GY).

K‘Fy

Vectc

It follows that for any P € Pervgo)(Grg) there exists an action g¥ ~ H*(Grg,P).
Goal: to construct it!

Remark 1.2. Let us recall the definition of a Tannakian category over C. Let (€, ®) be
an abelian tensor category over C. We say that C is rigid if for any V' € C, there exists
a dual object V* in the following sense: Home(W, V*) ~ Home(W ® V, 1) functorially
on W, here 1 is the identity object of (C,®). Let F': € — Vectc be a tensor functor.
We say that F'is a fiber functor if it is exact and faithfull. We say that a category C
is Tannakian if it is abelian, tensor, rigid, equipped with a fiber functor and such that
Ende(1) =C .
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Remark 1.3. Tt is enough to construct the action of U(n") on H*(Grg,P) = V. To see
this, let us recall that the functor H* is TV-graded:

H*(Grg,—) ~ @) HP (S, ),
HEAG

here 2p¥ is the sum of positive roots. We obtain the action of t¥ C g¥ on V. Let us
now suppose that we have constructed the action U(n") ~ V geometrically. It follows
from the construction that if we interchange B and B_ then we will obtain the action
of U(n_). More detailed: we have two decompositions (by T-weight spaces)

P HE (S, P) =V = D HP (T, P).
2 Iz

The action of U(n") comes from the first decomposition and the consideration of de-

formations of S, (S,), the action of U(nY) comes from the second decomposition and

the consideration of deformations of T}, (T',,).

Remark 1.4. The convolution product of two perverse sheaves Py, Py can be de-
fined as follows. Consider the Beilinson-Drinfeld Grassmannian Gryi,ai g, and a
diagonal embedding A! < A! x Al. Let U be the complement to the diagonal in
Al x Al. Tt is easy to see that Gryz ¢ |v ~ ((?:1"A1,G1;<1 Grp1 ¢)|lu. We consider the sheaf

Parg X Pai o on Grpz o |y. By the definition Py, * Pai g = %G (Par 4 X Pat o),
b A b b b A b b A b

where j: Grp2 ¢ |v < Grge g,i: Gran g < Grpe ¢ are open and closed embeddings
respectively. We set Py x Po := (Px 1 ;k( Px.2)|cGrg-

2. GEOMETRIC CONSTRUCTION OF THE UNIVERSAL ENVELOPING ALGEBRA

2.1. Main problem. Let B be a Borel subgroup of GG, that contains T'. Let Ag be
the co-character lattice of T C G. Let B_ be the opposite Borel subgroup. Any
i € Ag gives rise to the element z# € Grg. For p € Ag define S, := U(X) - 2* (resp.
T, :=U_-2z").

Proposition 2.1. (Braverman-Finkelberg-Gaitsgory-Mircovic)
There exists an isomorphism U(nY) ~ @ HP(S, N Ty,C) =: A of TV-graded
HEAG
vector spaces i.e. the vector space He*"(S,, NTy, C) identifies with the TV-weight space
UnY),.

It is known that U(n") has a bialgebra structure. The goal for now is to describe
multiplication and comultiplication morphisms in purely geometrical terms.

2.2. Zastava spaces. Suppose now that our projective curve X is P!. We fix a co-
character u € Ag. Set B := G/B — the flag variety. Recall that Ha(B,C) = Ag,
hence, we have a notion of a map P! — 9B of degree u. The equivalent way to define a
degree is the following: recall that for any character A: T'— C* one can consider the
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corresponding line bundle Ly on B. We say that the map f is of degree p if for any
A € Ag the pull back f*(Ly) has degree (A, u). We denote

71 = {f:P' — B deg(f) = p, f(c0) = B_}.
It is known to be a smooth algebraic variety.

Example 2.2. Suppose G = SLo, then B ~ P!, B_ is co and Ag identifies with
Z. We fix n € Z. The map from P! to P! of degree n that sends oo to oo is given
by (z : y) — (P(z,y) : Q(x,y)) for some homogeneous polynomials P, @ of degree n
having no common roots. We set ¢ := ¥ and consider the corresponding polynomials
P(t),Q(t). The condition f(oo) = oo is equivalent to deg(Q(t)) > deg(P(t)).

Remark 2.3. Set k := deg(Q(z,y)) = deg(P(z,y)). Morphism (z : y) — (P(z,y) :
Q(x,y) corresponds to the morphism O(—k) — O @& O given by (P, @), hence k = n.

It follows that the space Z" is isomorphic to the space
{(P, Q)| deg(Q) = n,deg(P) < n,Q is monomial, ged(P,Q) = 1}.

If we drop the last condition we will obtain so-called Zastava space to be denoted zn
that is isomorphic to A?" in our situation.

Let us point out that the map P! — P! of degree n is the same as a line subbundle
n: L= 060, hence, L ~ O(—n) and the morphism 7 is given by (P, Q). The condition
ged(P, Q) = 1 precisely means that the morphism 7 is an embedding of line bundles.

Dropping this condition we obtain the following moduli space:

{n: L—>08 0] deg(L) = —n,n is an embedding of coherent sheaves},

such that on the fiber at oo image of 7| is the line (0,¢) C C @ C.

Let us also note that the space Z™ comes equipped with the natural (factorization)
morphism 7, : Z* — S™(A!) ~ A! to the n-th symmetric power of Al. It sends (P, Q)
to the set of roots of () computed with multiplicities. More geometrically this is the
divisor f=1(0) C P! (recall that f is our map from P! to P1).

Let us now define zastava spaces for a general curve X (again we start from G = SLq
case).

zm={Lhe LN O deg(L) = —n, Con is generically isomorphism, A?(&) is trivialized .}
When we say that the morphism ( o7 is generically isomorphism we mean that there
are only finitely number of points of X in which our morphism is not an isomorphism
(and hence zero). In other words it means that the morphism on: £ — O corresponds

to a divisor D C X of degree n. We obtain the factorization morphism 2" — X ()
where X (™ =: §7(X).

Remark 2.4. The difference between Z™ and Z™ is the following. For X = P! we have
the factorization morphism Z" — (P1)(™ after restricting it to (A')(™ we obtain Z".

We can now proceed to the definition of Z# for arbitrary reductive group G and
a cocharacter 4 € Ag. We will do it via Tannakian formalism (in the spirit of the
definition of the flag variety via functor of points and Pliicker relations):



For X € AY, let CY be the one-dimensional representation of T via character
AT — C*. Let Z* be the moduli space of the following data:

1) a G-bundle € on X,

2) a T-bundle T on X of degree —pu,

3) for every X € AVT, a morphism of coherent sheaves (C%V SN Vév and a surjective
morphism of vector bundles Vév CLV> Ogx x satisfying the following conditions:
a) for every \Y € AVT the composition (v ony) is an isomorphism generically,
the Pliicker relations hold (this is exactly a reformulation of Pliicker equations for
flag varieties in families:
b) For every X,y € A¥F let pryy - VY @ VE - VA1 be the projection mor-
phism. We have the corresponding morphisms
vV \2 Y2
pl“i\/“uvi ’\7%\/ &® V’g — ’\72 e .

Then the following diagrams are commutative:

Oy ® O Id®Id Oy

lmv ®n,v lnxv Y
e

v v PTyv, vlu N
(Ve ® Vi )lu — (Vg 7)lu,

NG 4 pri\/’uv|U 2
(Vg ®Vg o ——— (Vg v
l@v‘@c“\/ lCAvav

Oy ® Oy M) Op.

¢) Given a morphism pr: VA" @ VA — V¥ for X, @/, 1" € AV, 1/ < X 4+ 1Y, we
have
préo(ny @nu) =0, ((v ® () opr® =0.
d) For AY =0 we have (yv = Id and ny = Id.

Remark 2.5. If we require morphisms 7,v to be embeddings of vector bundles we will

(o]
obtain the open zastava Z#, if we do not require morphisms (yv to be surjective we will
obtain compactified zastava spaces Z*.

Remark 2.6. Let us give another definition of the spaces Z# (Z*). It is the moduli
space of B-structures ¥ of degree y in the trivial G-bundle £V where & is a G-bundle,
Ut is a B-structure of degree p in &, ¥~ is a B_-structure of degree 0 in & such that
these two structures are generically transversal.

Example 2.3. Again suppose G = SLo. Then B-structure in the trivial SLo-bundle
is the same as an embedding n: L — O & O such that deg(£) = n. Standard U_-
structure corresponds to the surjection (: O & O — O onto the second component.
The transversality condition is simply a fact that m o v is an isomorphism everywhere
except the finite number of points. It follows that this morphism is isomorphic to
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O(=D) = O for some divisor D. Thus, we obtain a morphism Z" — S™(A!). It is
called a factorization morphism.

2.6.1. Factorization morphism. For a € Ag, let @« = > n;a;. For a curve X, set
X .= HX("i). In the same way as in the Example 2.2 we obtain a factorization
morphism 7w,: Z% — X (@), Fix an element D € X(O‘), it can be written as »_ «a; - Dy,
where deg(D;) = n;. It follows that for any character X € AJ, we have a divisor
ST, a;)D;. We will say that two elements D, D’ € X(® are disjoint if for any \’, the
corresponding divisors are disjoint. Factorization morphism has the following property:
for a decomposition a = a1 + a9 and two disjoint divisors D € X(C”)7 Dy € X(@2) we
have the natural isomorphism

ngl(Dﬂ X 7[';21(D2) ~ 7r;1(D1 + D).

Example 2.4. Again for G = SLy the factorization property simply says that any
fraction ﬁ with @1 and Q)2 having no common root can be uniquely presented as

P, P

ot o

Proposition 2.5. Fix a point x € X and consider a divisor a-x € X (@) then the fiber
F* .= 7w (- 2) is isomorphic to the intersection S, N Tp.

Remark 2.7. Taking a fiber over a -z for open zastava we obtain the intersection S, N7p,
for compactified zastava we get S, N Ty.

2.8. Comultiplication via factorization. Recall the morphism 7, : Z# — X (1) We
fix a decomposition @ = a1 + a9 and consider the natural embedding

X = XW gy (x4 - y).

After restricting the factorization morphism to A!, we obtain a family lel(X ) = X
with zero fiber equal to F* and the fiber over y € X \ {z} equal to F*1 x Fr2.

2.9. Cospecialization construction. Let 7: § — X be a one-parameter family over
X, and assume that this family is trivial over X \ {0} i.e. 7 1(X \ {z}) ~ S|, x
(X \ {z}) for some y # x. Then for any constructible complex F' on S there exists a
cospecialization map Hy S|z, F'[3) — HZ(S|y, F)-

Remark 2.10. Cospecialization morphism is constructed as follows. Consider complex
m(F) on X. The restriction m(F)|x\ () identifies with (mF|1) W Cx\ 3. To construct
the desired morphism we may suppose that I is a sheaf. It is also enough to construct
a map m(F)g — m(F);. We fix now an element s € m(F)o, it is represented by a
section sy € m(F)(U) for some open set containing {z}. Now we fix any point ¢t € U
such that t # x. The restriction (sy); defines an element of m(F)|; >~ m(F)|y, hence,
we obtain an element of m (F)|,. Correctness is obvious.

Remark 2.11. More generally, given a stratified variety S and a complex F on S which is
constant on the strata, there exists a natural cospecialization map F|; — F'|; whenever
the stratum containing point s lies in the closure of the stratum containing the point t.

Cospecialization construction gives us a morphism A, — A, ® A,,. By summing
over for all ;4 we obtain the comultiplication morphism A: A — A ® A.
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2.12. Schieder’s deformation. We have constructed comultiplication morphism (it
was standard), now we are going to construct a multiplication morphism by constructing
another deformation of F# = gu N Ty. Let us again start from the case G = SLo,
consider the following moduli space:

yr={Lhe Boe, AN O| deg(L) = —n, (opon is an isomorphism generically},

7 is an embedding of vector bundles, ( is a surjection.
There exists a natural morphism v: Y™ — Al that sends (1, p, () to det(y). We

[e]
note now that the fiber over any point ¢ # 0 identifies with Z™, hence, we obtain a
deformation of zastava. Let us describe the fiber over zero. Note that we still have a
factorization morphism Y — X that sends (n, ,¢) to the divisor that corresponds
to the composition ¢ o ¢ o 7. Denote by 2™ the fiber over n - 0. It consists of the data

O(—n-0) L & 5 &, S 0it maps to A! via det (i), let us describe the fiber over 0. We
have det(p) = 0, hence, the morphism ¢ may be decomposed as &; <, O(—n’) 2y 8,
for some n. We note now that the data O(—n) % & < O(—n') defines a point of

7" and the data of O(—n’) , &1 S5 O defines a point of ¥, hence we obtain the

isomorphism "o ~ |J F™ x F"2, hence, applying cospecialization construction
ni+no=n
we obtain a morphism

D HPEn O @ HP(Fny,C) = D A © Any = A = HIP(55,0).
nit+na=n nitnz=a

Summing over all n we obtain a multiplication morphism m: A ® A — A.
oM

It was an SLg-case, the general case may be treated as follows. We set Z :=| | Z .

o
This space classifies pairs of B-structure and U_-structure in the trivial bundle € that
are generically transversal.

Note that it is isomorphic to the following space of maps: Z = Mapsg, (X, G /(B x
U-) D pt), here U_ is a unipotent radical of B_ and by Maps,, (X, S D Sp) we mean
such maps X — S that generically go to Sy. We want to deform this space. To do so,
we can deform the group G.

2.12.1. Vinberg semigroup. Let r be the rank of G. There exists a semigroup to be
denoted Ving equipped with a morphism v: Ving — A" such that a fiber over any
point (¢y,...,¢) with all ¢; nonzero is isomorphic to G. This family also has a section
s: A" — Ving.

Example 2.6. For G = SLy we have Ving = Matsyxs and the morphism v simply
sends A to det(A), s sends ¢ to diag(1, c).

Remark 2.13. Vinberg semigroup can be constructed as follows. Recall that the algebra
of functions C[G] admits a natural multifiltration by the character lattice Ag. By the
definition, Ving is the spectrum of the Rees algebra with respect to this filtration.

Denote by Vingrhat the B x U_-orbit of the section s(A") and finally define Y :=
Maps,, (X, Ving /(B x U-) D Ving™"" /(B x U_).



The scheme Y* can be described in the following Tannakian way:
1) two right G-torsors €1,E4 on X,

2) for every X € AV*T a morphism ¢y : Vé‘vl — \7)‘2,

3) for every p/ € AY a number ¢y,

4) a T-bundle T on X of degree —p,

5) for every A € AV morphisms of vector bundles

NS N NS
mv: Cy = Ve, (v Ve, = Ox,

satisfying the following conditions:
a) for every XY € AV*, the composition

Cwv oMy - (C%\-V — Ox

is an isomorphism generically.
b) The Pliicker relations hold.

c) For any pf, 115 € AY we have CL{ iy, = CpY -

d) For any X{, X4, " € AV+ such that V' enters VM @ V*2 with nonzero multiplicity,
we denote by ¢: WY s VM @ V2 the embedding of the corresponding isotypical
component and by pr: VM @ VA2 = WY the corresponding projection. We denote by
&1, pré? the corresponding morphisms between the induced vector bundles. Then we
have

pr®? O(SO,W1 ® @Ag) 0t = (CA{HngV) 2%
e) The morphism ¢( coincides with the identity morphism, and the morphism 7
coincides with the identity morphism.
We have a natural morphism Y* — A", we will denote by the same symbol (Y#) the
restriction of this deformation to the diagonal A! < A",

Remark 2.14. Variety Y is irreducible.

Remark 2.15. The morphism v is flat. To see that we note that v is surjective and Y ¢
is irreducible. Note also that the morphism v is not smooth in general.

2.16. Multiplication via Schieder degeneration. We have the factorization mor-
phism Y — X(® we denote by N* the preimage of o - 0. Consider the restriction
Vlge: P* — Al. The fibers 9%|; for t # 0 are isomorphic to F¢. The fiber over 0

naturally identifies with the union |J Fa, X Fa,, hence, applying cospecialization
a1tas=a
construction we obtain a morphism

D HPTw,C)© HP (T, C) = (D Aa & Aay = Aa = HIP(Fa,C).

altaz=a ajtaz=a

Summing over all @ we obtain a multiplication morphism m: A ® A — A.
3. CONSTRUCTION OF THE ACTION

Example 3.7. Recall that the space Z" coincides with the following set:

/
= <g g’) | det(M) = 1,Q is monomial of degree n, deg(P) < n}



We have the natural deformation:

/
Y":={M = <g g,) | det(M) € C, @ is monomial of degree n, deg(P) < n}

equipped with a morphism Y™ — A!', M s det(M). This is exactly Shieder’s
degeneration!

We now fix a perverse sheaf P € Pervgo)(Grg) and recall a bialgebra A of the
last Section. We set V := H*(Grg,P). Our goal is to construct an action A ~ V.

To do so, we first recall that V = @ V), — T"V-weight decomposition and that V,, =
HEAG

H<2pv’“>(SM,iP), here, 2p¥ is the sum of positive roots. So, we must construct maps
Aoy @ Vo = Vo, @ = a1 + ag. We will do it by deforming ind-schemes S, (we start
from deforming Grg the whole Grassmannian).

3.1. Main construction. We start from the simplest case G = SLy. The general case
will be treated completely analogously via Tannakian approach. Recall that Grg is the
moduli space of pairs (€,0), where € is a G-bundle on X and o is a trivialization of £
away from {z}. We note that this moduli space coincides with the moduli space of the

following data: {O e S, 0}, where 7, are rational morphisms with poles at zero

such that (¢ on)|x\(z3 = Id. Let us comment that a rational morphism O — & with

poles at zero is by the definition an element of the inductive limit im{O(—n-0) — £}
—

(for ¢ the definition is analogous).
We are now ready to define our main player — the deformation of Grg:

Grg = oL e Be, 50 |0, { —rational with pole at zero, (o@on)|p\ oy = Id}.

Let us define now the degeneration S, = Al. To do so, we recall the modular
approach to Sp:

Sp = {0(=n-0) B & £ 0| ¢ — rational, (€ o )| (p1\ (03 = Id}.

We now define degeneration
Sy = {0(—=n-0) 28 5oe, 50 | ¢ — rational, (¢ o @ o n)|p1\(o1) = Id}.

Let us give the Tannakian definition of the ind-scheme S, C Grg. The corresponding
functor of points associates to a scheme S

1) a G-bundle € on X,

2) for every XV € AVt morphisms of sheaves ny : Ox(—(\,v)-x) — ng and rational
morphisms Cy: V3 — Ox regular on (X \ {x}), satisfying Pliicker relations.

The deformations (Trg, 5“ can be now defined analogously to Y* above.

Main property of the deformation Grg: for any ¢ # 0, the fiber ((Trg)h is isomorphic
to Grg, for t = 0 we have (Gra)lo= U Ty, X Sy

pitp2=p

Analogously, for any ¢ # 0, the fiber (gu)‘t is isomorphic to S, for t = 0 we have

(Slo= U " xSy,
H1tp2=p
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3.2. Action. To define the action via our deformation we must construct a sheaf P on
Sy that restricts to CX (P[g,, ) on zero fiber and to P[g, on the fiber over 1.

To do so we start from the constructing of the closed embedding ¢: gu — Grg x Grg.
It simply sends

to the pair
O e 50,008 25 0) e Grg x Grg .
Lemma 3.8. The morphism ¢ is a closed embedding.
Define P := *(C X Pls,.)-
Remark 3.3. We note that
We have constructed a sheaf P to S’M. It is easy to see that the restriction §|(§H)t is

isomorphic to P|s, and the restriction of P to FH x Sy, is isomorphic to CX (P[g,, ).
The cospecialization construction defines a morphism

P Au @V — Ve
p1tpz=p
After summing over all © we obtain a morphism act: AQV — V.
Let us summarize our results:

Theorem 3.9. a) The bialgebra (A, A,m) is isomorphic to the universal enveloping
algebra U(n").

b) The natural action U(nY) ~ V geometrically is given by cospecialization construc-
tion above and coincides with the morphism act after the identification A ~ U(n").

3.4. Sketch of proof. The proof goes as follows.

3.4.1. First step. First of all we must check that the morphism act: AV — V
actually defines an action A ~ V. To do so, we must show that the following diagram

is commutative:
m®Id

ARARV AV
\LId@act iaet
.A®V act V.

To prove this, we construct a family over A? and a certain complex on this family such

that the composition act o(m ® Id) coincides with the cospecialization morphism for

this complex from (0,0) to (1,0) and then to (1,1). On the other hand the composition

act o(Id ® act) coincides with the cospecialization morphism for our complex from (0, 0)
0 (0,1) and then to (1,1).

Recall now that given a stratified variety S and a complex F' on S which is constant
on the strata, there exists a natural cospecialization map F|? — F|; whenever the
stratum containing point s lies in the closure of the stratum containing the point ¢.

We note now that both the compositions of cospecializations above tautologically
coincide with the cospecialization morphism from (0,0) to (1,1) in the whole family
over A2,
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3.4.2. Second step. Our aim now is to prove that the action that we have constructed
comes from the natural action U(g") ~ V i.e. that there exists a morphism of algebras
A — U(g") that commutes with our actions. From the general Tannakian formalism,
to do so it is enough to prove that our action is compatible with the tensor structure
on Rep(GY) i.e. that for any two finite-dimensional GV-modules V,W the following
diagram is commutative:

AV OW netvew Vew (3.1)
lmm lm
ac ac o(Id Id
A0 AcV Wt @actwelde®ld) oy

where the morphism 1: A®V — V ® A sends a ® b to b ® a. For proving it we again
construct a two-parametric family and a complex such that both compositions in our
diagram coincide with the cospecialization morphism from (0, 0) to (1,1). Let us briefly
describe the construction. Again let us do it for SLg, in general case we just have to
use a Tannakian approach. Recall that the family S, that gave us the action A ~ V
was the moduli space

Sp={0(-n-0) 5 & 5 & 50 | ¢ —can have poles at zero, (Co @ on)|p\ (o} = Id}.

We now deform it in the following way:

Sp=1{0(=n-0) L& Phe, e S 0|
| ¢ — can have poles at zero, (¢ o @10 p20n)|p1\foy = Id}.

We obtain the desired two-parametric family, the morphism 7: gn — A? is given
by (n,¢1,92,() — (detpr,det py). We have a natural closed embedding - S, =

Gre x Gre x Gre and we consider a complex P := F(CRCXP).
After obtaining a morphism U(a) — U(g") it is easy to see that it is injective and
graded dimensions coincide, hence, we obtain the isomorphism.

Remark 3.5. According to the Tannakian formalism, group G coincides with the group
of (tensor) authomorphisms of the fiber functor. Analogously, the Lie algebra gV coin-
cides with the set of endomorphisms E of the fiber functor F' such that for any V, W
the following diagram is commutative:

E(V)@Id +1d @ E(W)

F(V)® F(W) F(V)® F(W)
F(VaW) Pver) F(VeW).

We now consider the Lie algebra a C A, consisting of primitive elements. It follows
from 3.1 and the observation above that we have a Lie algebra homomorphism a — g“
that induces a morphism U (a) — U(g").
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4. POSSIBLE GENERALIZATIONS AND DRINFELD-GAITSSGORY DEFORMATIONS

4.1. Drinfeld-Gaitsgory interpolation. Let us start this Section from one general
construction due to Drinfeld-Gaitsgory. Let Z be an algebraic variety equipped with
a C*-action. Let us also denote by X the variety A? with the following action of C*:
(z,y) + (tz,t~'y. Note that the natural morphism X — A! that sends (z,y) to zy is
equivariant with respect to the trivial C*-action on Al

Let us define a scheme Z98 (it will be certain scheme over A!). Fix an Al-scheme S.
Define Maps,1 (S, Z98) := Maups(Sg1 X, Z)Cm,

4.1.1. Main properties. By the definition we have a morphism Zd% — Al. We denote
g
by Z;° the fiber over zero.

Proposition 4.10. 1) We have thg ~ 7 fort # 0.

2) We have Z3¢ ~ Z+ x Z~, where Z* := {z € Z|EI%iIr(1)t -z}
Z(Cx —

4.2. Drinfeld-Gaitsgory interpolation of Grg. Recall the reductive group G, max-
imal torus T' C G and the affine Grassmannian Grg, consider the C*-action via

~d
2p: C* — T, here T acts by left multiplication. We obtain the interpolation GrGg.
—~—d —
Relation between GrGg and Grg is the following. There exists an open embedding

—~—d —
GrGg < Grg that is isomorphism away from zero fiber, on the level of zero fiber it
coincides with the natural embedding | |7}, x S, < [JT,, x S,.

1 "

5. QUESTIONS

5.1. Quantum universal enveloping algebra. Is it possible to geometrically con-
struct Uy (n") in the same manner?

5.2. Drinfeld-Gaitsgory interpolations. General Drinfeld-Gaitsgory interpolation
construction?

5.3. Kac-Moody Lie algebras. Generalization to affine (Kac-Moody) Lie algebras?



