
TALK ON DRINFELD-GAITSGORY INTERPOLATION

GRASSMANNIAN AND GEOMETRIC SATAKE EQUIVALENCE

1. Affine Grassmannian and geometric Satake

Let G be a reductive algebraic group over C and T ⊂ G is a maximal torus. We
assume for the latter that [G,G] is simply connected (for simplicity). Set K := C((z)),
O := C[[z]]. Define GrG := G(K)/G(O). This is and ind-projective scheme called
affine Grassmannian of G. Let X be a smooth projective curve over C (for example
X = P1). We fix a point x ∈ X (0 ∈ P1). It is known that GrG has the following
moduli description:

GrG ' {(E, σ) |σ : E|X\{x} ' Etriv|X\{x}},

where Etriv is a tr Consider the action G(O) y GrG = G(K)/G(O) via left multiplica-
tion (changing the trivialization).

Remark 1.1. Fix a maximal torus T ⊂ G, let ΛG (Λ+
G) be the lattice (submonoid) of

cocharacters (dominant cocharacters) of T ⊂ G. Any λ ∈ ΛG gives rise to the element
zλ ∈ GrG. We set GrλG := G(O) · zλ. We have the following (Cartan) decomposition:

GrG =
⊔
λ∈Λ+

G

GrλG .

Let PervG(O)(GrG) be the category of G(O)-equivariant perverse sheaves on GrG.
This abelian category has a Tannakian structure – tensor product comes from the
convolution and fiber functor simply sends a sheaf P to the global cohomology
V := H∗(GrG,P). Geometric Satake isomorphism (to be denoted SG) identifies
PervG(O)(GrG) and Rep(G∨) as Tannakian categories, here G∨ is the Langlands dual
group to G:

PervG(O)(GrG)
SG //

H∗

''

Rep(G∨).
Forg

yy
VectC

It follows that for any P ∈ PervG(O)(GrG) there exists an action g∨ y H∗(GrG,P).
Goal: to construct it!

Remark 1.2. Let us recall the definition of a Tannakian category over C. Let (C,⊗) be
an abelian tensor category over C. We say that C is rigid if for any V ∈ C, there exists
a dual object V ∗ in the following sense: HomC(W,V ∗) ' HomC(W ⊗ V,1) functorially
on W , here 1 is the identity object of (C,⊗). Let F : C → VectC be a tensor functor.
We say that F is a fiber functor if it is exact and faithfull. We say that a category C

is Tannakian if it is abelian, tensor, rigid, equipped with a fiber functor and such that
EndC(1) = C .
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Remark 1.3. It is enough to construct the action of U(n∨) on H∗(GrG,P) = V . To see
this, let us recall that the functor H∗ is T∨-graded:

H∗(GrG,−) '
⊕
µ∈ΛG

H〈2ρ
∨,µ〉

c (Sµ,−),

here 2ρ∨ is the sum of positive roots. We obtain the action of t∨ ⊂ g∨ on V . Let us
now suppose that we have constructed the action U(n∨) y V geometrically. It follows
from the construction that if we interchange B and B− then we will obtain the action
of U(n−). More detailed: we have two decompositions (by T∨-weight spaces)⊕

µ

H〈2ρ
∨,µ〉)

c (Sµ,P) ' V '
⊕
µ

H〈−2ρ∨,µ〉
c (Tµ,P).

The action of U(n∨) comes from the first decomposition and the consideration of de-
formations of Sµ (Sµ), the action of U(n∨−) comes from the second decomposition and

the consideration of deformations of Tµ (Tµ).

Remark 1.4. The convolution product of two perverse sheaves P1, P2 can be de-
fined as follows. Consider the Beilinson-Drinfeld Grassmannian GrA1×A1,G, and a

diagonal embedding A1 ↪→ A1 × A1. Let U be the complement to the diagonal in
A1×A1. It is easy to see that GrA2,G |U ' (GrA1,G ×

A1
GrA1,G)|U . We consider the sheaf

PA1,1 �
A1

PA1,2 on GrA2,G |U . By the definition PA1,1 ∗
A1

PA1,2 := i∗j∗!(PA1,1 �
A1

PA1,2),

where j : GrA2,G |U ↪→ GrA2,G, i : GrA1,G ↪→ GrA2,G are open and closed embeddings
respectively. We set P1 ∗ P2 := (PX,1 ∗

X
PX,2)|GrG .

2. Geometric construction of the universal enveloping algebra

2.1. Main problem. Let B be a Borel subgroup of G, that contains T . Let ΛG be
the co-character lattice of T ⊂ G. Let B− be the opposite Borel subgroup. Any
µ ∈ ΛG gives rise to the element zµ ∈ GrG. For µ ∈ ΛG define Sµ := U(K) · zµ (resp.
Tµ := U− · zµ).

Proposition 2.1. (Braverman-Finkelberg-Gaitsgory-Mircovic)

There exists an isomorphism U(n∨) '
⊕
µ∈ΛG

Htop
c (Sµ ∩ T0,C) =: A of T∨-graded

vector spaces i.e. the vector space Htop
c (Sµ ∩T0,C) identifies with the T∨-weight space

U(n∨)µ.

It is known that U(n∨) has a bialgebra structure. The goal for now is to describe
multiplication and comultiplication morphisms in purely geometrical terms.

2.2. Zastava spaces. Suppose now that our projective curve X is P1. We fix a co-
character µ ∈ ΛG. Set B := G/B – the flag variety. Recall that H2(B,C) = ΛG,
hence, we have a notion of a map P1 → B of degree µ. The equivalent way to define a
degree is the following: recall that for any character λ : T → C× one can consider the
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corresponding line bundle Lλ on B. We say that the map f is of degree µ if for any
λ ∈ ΛG the pull back f∗(Lλ) has degree 〈λ, µ〉. We denote

◦
Z̃µ := {f : P1 → B | deg(f) = µ, f(∞) = B−}.

It is known to be a smooth algebraic variety.

Example 2.2. Suppose G = SL2, then B ' P1, B− is ∞ and ΛG identifies with
Z. We fix n ∈ Z. The map from P1 to P1 of degree n that sends ∞ to ∞ is given
by (x : y) 7→ (P (x, y) : Q(x, y)) for some homogeneous polynomials P,Q of degree n
having no common roots. We set t := y

x and consider the corresponding polynomials
P (t), Q(t). The condition f(∞) =∞ is equivalent to deg(Q(t)) > deg(P (t)).

Remark 2.3. Set k := deg(Q(x, y)) = deg(P (x, y)). Morphism (x : y) 7→ (P (x, y) :
Q(x, y) corresponds to the morphism O(−k)→ O⊕ O given by (P,Q), hence k = n.

It follows that the space
◦
Z̃n is isomorphic to the space

{(P,Q) | deg(Q) = n,deg(P ) < n,Q is monomial, gcd(P,Q) = 1}.
If we drop the last condition we will obtain so-called Zastava space to be denoted Z̃n

that is isomorphic to A2n in our situation.
Let us point out that the map P1 → P1 of degree n is the same as a line subbundle

η : L ↪→ O⊕O, hence, L ' O(−n) and the morphism η is given by (P,Q). The condition
gcd(P,Q) = 1 precisely means that the morphism η is an embedding of line bundles.

Dropping this condition we obtain the following moduli space:

{η : L ↪→ O⊕ O | deg(L) = −n, η is an embedding of coherent sheaves},
such that on the fiber at ∞ image of η|∞ is the line (0, c) ⊂ C⊕ C.

Let us also note that the space Z̃n comes equipped with the natural (factorization)

morphism πn : Z̃n → Sn(A1) ' A1 to the n-th symmetric power of A1. It sends (P,Q)
to the set of roots of Q computed with multiplicities. More geometrically this is the
divisor f−1(0) ⊂ P1 (recall that f is our map from P1 to P1).

Let us now define zastava spaces for a general curve X (again we start from G = SL2

case).

Zn := {L η−→ E
ζ−→ O | deg(L) = −n, ζ◦η is generically isomorphism,Λ2(E) is trivialized .}

When we say that the morphism ζ ◦ η is generically isomorphism we mean that there
are only finitely number of points of X in which our morphism is not an isomorphism
(and hence zero). In other words it means that the morphism ζ ◦η : L→ O corresponds

to a divisor D ⊂ X of degree n. We obtain the factorization morphism Zn → X(n),
where X(n) =: Sn(X).

Remark 2.4. The difference between Zn and Z̃n is the following. For X = P1 we have
the factorization morphism Zn → (P1)(n), after restricting it to (A1)(n) we obtain Z̃n.

We can now proceed to the definition of Zµ for arbitrary reductive group G and
a cocharacter µ ∈ ΛG. We will do it via Tannakian formalism (in the spirit of the
definition of the flag variety via functor of points and Plücker relations):
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For λ∨ ∈ Λ∨, let Cλ∨ be the one-dimensional representation of T via character
λ∨ : T → C×. Let Zµ be the moduli space of the following data:

1) a G-bundle E on X,
2) a T -bundle T on X of degree −µ,

3) for every λ∨ ∈ Λ∨+, a morphism of coherent sheaves Cλ∨T
ηλ∨−−→ Vλ

∨
E and a surjective

morphism of vector bundles Vλ
∨
E

ζλ∨−−→ OS×X satisfying the following conditions:
a) for every λ∨ ∈ Λ∨+ the composition (ζλ∨ ◦ ηλ∨) is an isomorphism generically,
the Plücker relations hold (this is exactly a reformulation of Plücker equations for

flag varieties in families:
b) For every λ∨, µ∨ ∈ Λ∨+ let prλ∨,µ∨ : V λ∨ ⊗ V µ∨ � V λ∨+µ∨ be the projection mor-

phism. We have the corresponding morphisms

prEλ∨,µ∨ : Vλ
∨
E ⊗ V

µ∨

E → V
λ∨+µ∨

E .

Then the following diagrams are commutative:

OU ⊗ OU
Id⊗ Id−−−−→ OUyηλ∨⊗ηµ∨ yηλ∨+µ∨

(Vλ
∨
E ⊗ V

µ∨

E )|U
prE
λ∨,µ∨ |U−−−−−−→ (Vλ

∨+µ∨

E )|U ,

(Vλ
∨
E ⊗ V

µ∨

E )|U
prE
λ∨,µ∨ |U−−−−−−→ (Vλ

∨+µ∨

E )|Uyζλ∨⊗ζµ∨ yζλ∨+µ∨
OU ⊗ OU

Id⊗ Id−−−−→ OU .

c) Given a morphism pr: V λ∨ ⊗ V µ∨ → V ν∨ for λ∨, µ∨, ν∨ ∈ Λ∨+, ν∨ < λ∨ + µ∨, we
have

prE ◦(ηλ∨ ⊗ ηµ∨) = 0, (ζλ∨ ⊗ ζµ∨) ◦ prE = 0.

d) For λ∨ = 0 we have ζλ∨ = Id and ηλ∨ = Id.

Remark 2.5. If we require morphisms ηλ∨ to be embeddings of vector bundles we will

obtain the open zastava
◦
Zµ, if we do not require morphisms ζλ∨ to be surjective we will

obtain compactified zastava spaces Zµ.

Remark 2.6. Let us give another definition of the spaces
◦
Zµ (Zµ). It is the moduli

space of B-structures Ψ of degree µ in the trivial G-bundle Etriv where E is a G-bundle,
Ψ+ is a B-structure of degree µ in E, Ψ− is a B−-structure of degree 0 in E such that
these two structures are generically transversal.

Example 2.3. Again suppose G = SL2. Then B-structure in the trivial SL2-bundle
is the same as an embedding η : L ↪→ O ⊕ O such that deg(L) = n. Standard U−-
structure corresponds to the surjection ζ : O ⊕ O → O onto the second component.
The transversality condition is simply a fact that π ◦ v is an isomorphism everywhere
except the finite number of points. It follows that this morphism is isomorphic to
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O(−D) ↪→ O for some divisor D. Thus, we obtain a morphism
◦
Zn → Sn(A1). It is

called a factorization morphism.

2.6.1. Factorization morphism. For α ∈ Λ+
G, let α =

∑
niαi. For a curve X, set

X(α) :=
∏
X(ni). In the same way as in the Example 2.2 we obtain a factorization

morphism πα : Zα → X(α). Fix an element D ∈ X(α), it can be written as
∑
αi ·Di,

where deg(Di) = ni. It follows that for any character λ∨ ∈ Λ+
G we have a divisor∑

〈λ∨, αi〉Di. We will say that two elements D,D′ ∈ X(α) are disjoint if for any λ∨, the
corresponding divisors are disjoint. Factorization morphism has the following property:
for a decomposition α = α1 + α2 and two disjoint divisors D1 ∈ X(α1), D2 ∈ X(α2) we
have the natural isomorphism

π−1
α1

(D1)× π−1
α2

(D2) ' π−1
α (D1 +D2).

Example 2.4. Again for G = SL2 the factorization property simply says that any
fraction P

Q1·Q2
with Q1 and Q2 having no common root can be uniquely presented as

P1
Q1

+ P2
Q2

.

Proposition 2.5. Fix a point x ∈ X and consider a divisor α ·x ∈ X(α), then the fiber
Fα := π−1

α (α · x) is isomorphic to the intersection Sα ∩ T0.

Remark 2.7. Taking a fiber over α·x for open zastava we obtain the intersection Sα∩T0,
for compactified zastava we get Sα ∩ T 0.

2.8. Comultiplication via factorization. Recall the morphism πµ : Zµ → X(µ). We
fix a decomposition α = α1 + α2 and consider the natural embedding

X ↪→ X(µ), y 7→ (µ1 · x+ µ2 · y).

After restricting the factorization morphism to A1, we obtain a family π−1
µ (X) → X

with zero fiber equal to Fµ and the fiber over y ∈ X \ {x} equal to Fµ1 × Fµ2 .

2.9. Cospecialization construction. Let π : S → X be a one-parameter family over
X, and assume that this family is trivial over X \ {0} i.e. π−1(X \ {x}) ' S|y ×
(X \ {x}) for some y 6= x. Then for any constructible complex F on S there exists a
cospecialization map H∗c (S|x, F |∗x)→ H∗c (S|y, F |∗y).
Remark 2.10. Cospecialization morphism is constructed as follows. Consider complex
π!(F ) on X. The restriction π!(F )|X\{x} identifies with (π!F |1)�CX\{0}. To construct
the desired morphism we may suppose that F is a sheaf. It is also enough to construct
a map π!(F )0 → π!(F )1. We fix now an element s ∈ π!(F )0, it is represented by a
section sU ∈ π!(F )(U) for some open set containing {x}. Now we fix any point t ∈ U
such that t 6= x. The restriction (sU )t defines an element of π!(F )|t ' π!(F )|y, hence,
we obtain an element of π!(F )|y. Correctness is obvious.

Remark 2.11. More generally, given a stratified variety S and a complex F on S which is
constant on the strata, there exists a natural cospecialization map F |∗s → F |∗t whenever
the stratum containing point s lies in the closure of the stratum containing the point t.

Cospecialization construction gives us a morphism Aµ → Aµ1 ⊗ Aµ2 . By summing
over for all µ we obtain the comultiplication morphism ∆: A→ A⊗A.
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2.12. Schieder’s deformation. We have constructed comultiplication morphism (it
was standard), now we are going to construct a multiplication morphism by constructing
another deformation of Fµ = Sµ ∩ T0. Let us again start from the case G = SL2,
consider the following moduli space:

Y n := {L η−→ E1
ϕ−→ E2

ζ−→ O | deg(L) = −n, ζ ◦ ϕ ◦ η is an isomorphism generically},
η is an embedding of vector bundles, ζ is a surjection.

There exists a natural morphism v : Y n → A1 that sends (η, ϕ, ζ) to det(ϕ). We

note now that the fiber over any point t 6= 0 identifies with
◦
Zn, hence, we obtain a

deformation of zastava. Let us describe the fiber over zero. Note that we still have a
factorization morphism Y n → X(n) that sends (η, ϕ, ζ) to the divisor that corresponds
to the composition ζ ◦ ϕ ◦ η. Denote by Yn the fiber over n · 0. It consists of the data

O(−n ·0)
η−→ E1

ϕ−→ E2
ζ−→ O it maps to A1 via det(ϕ), let us describe the fiber over 0. We

have det(ϕ) = 0, hence, the morphism ϕ may be decomposed as E1
ζ′−→ O(−n′) η′−→ E2

for some n. We note now that the data O(−n)
η−→ E1

ζ′−→ O(−n′) defines a point of

Fn−n
′

and the data of O(−n′) η′−→ E1
ζ−→ O defines a point of Fn

′
, hence we obtain the

isomorphism Yn|0 '
⋃

n1+n2=n
Fn1 × Fn2 , hence, applying cospecialization construction

we obtain a morphism⊕
n1+n2=n

Htop
c (Fn1 ,C)⊗Htop

c (Fn2 ,C) =
⊕

n1+n2=α

An1 ⊗An2 → Anl = Htop
c (Fn,C).

Summing over all n we obtain a multiplication morphism m : A⊗A→ A.

It was an SL2-case, the general case may be treated as follows. We set
◦
Z :=

⊔
µ

◦
Z
µ

.

This space classifies pairs of B-structure and U−-structure in the trivial bundle E that
are generically transversal.

Note that it is isomorphic to the following space of maps:
◦
Z = Mapsgen(X,G/(B ×

U−) ⊃ pt), here U− is a unipotent radical of B− and by Mapsgen(X,S ⊃ S0) we mean
such maps X → S that generically go to S0. We want to deform this space. To do so,
we can deform the group G.

2.12.1. Vinberg semigroup. Let r be the rank of G. There exists a semigroup to be
denoted VinG equipped with a morphism v : VinG → Ar such that a fiber over any
point (c1, . . . , cr) with all ci nonzero is isomorphic to G. This family also has a section
s : Ar → VinG.

Example 2.6. For G = SL2 we have VinG = Mat2×2 and the morphism v simply
sends A to det(A), s sends c to diag(1, c).

Remark 2.13. Vinberg semigroup can be constructed as follows. Recall that the algebra
of functions C[G] admits a natural multifiltration by the character lattice ΛG. By the
definition, VinG is the spectrum of the Rees algebra with respect to this filtration.

Denote by VinBruhat
G the B × U−-orbit of the section s(Ar) and finally define Y :=

Mapsgen(X,VinG /(B × U−) ⊃ VinBruhat
G /(B × U−).
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The scheme Y µ can be described in the following Tannakian way:
1) two right G-torsors E1,E2 on X,

2) for every λ∨ ∈ Λ∨+ a morphism ϕλ∨ : Vλ
∨
E1
→ Vλ

∨
E2

,

3) for every µ∨ ∈ Λ∨+ a number cµ∨ ,
4) a T -bundle T on X of degree −µ,
5) for every λ∨ ∈ Λ∨+, morphisms of vector bundles

ηλ∨ : Cλ
∨
T ↪→ Vλ

∨
E1
, ζλ∨ : Vλ

∨
E2

� OX ,

satisfying the following conditions:
a) for every λ∨ ∈ Λ∨+, the composition

ζλ∨ ◦ ηλ∨ : Cλ
∨
T → OX

is an isomorphism generically.
b) The Plücker relations hold.
c) For any µ∨1, µ

∨
2 ∈ Λ∨+ we have cµ∨1cµ∨2 = cµ∨1+µ∨2

.

d) For any λ∨1, λ
∨
2, ν
∨ ∈ Λ∨+ such that V ν∨ enters V λ∨1⊗V λ∨2 with nonzero multiplicity,

we denote by ι : W ν∨ ↪→ V λ∨1 ⊗ V λ∨2 the embedding of the corresponding isotypical
component and by pr: V λ∨1 ⊗ V λ∨2 �W ν∨ the corresponding projection. We denote by
ιE1 , prE2 the corresponding morphisms between the induced vector bundles. Then we
have

prE2 ◦(ϕλ∨1 ⊗ ϕλ∨2) ◦ ιE1 = (cλ∨1+λ∨2−ν∨) · ϕν∨ .
e) The morphism ϕ0 coincides with the identity morphism, and the morphism τ0

coincides with the identity morphism.
We have a natural morphism Y µ → Ar, we will denote by the same symbol (Y µ) the

restriction of this deformation to the diagonal A1 ↪→ Ar.

Remark 2.14. Variety Y α is irreducible.

Remark 2.15. The morphism v is flat. To see that we note that v is surjective and Y α

is irreducible. Note also that the morphism v is not smooth in general.

2.16. Multiplication via Schieder degeneration. We have the factorization mor-
phism Y α → X(α) we denote by Yα the preimage of α · 0. Consider the restriction
v|Yα : Yα → A1. The fibers Yα|t for t 6= 0 are isomorphic to Fα. The fiber over 0
naturally identifies with the union

⋃
α1+α2=α

Fα1 ×Fα2 , hence, applying cospecialization

construction we obtain a morphism⊕
α1+α2=α

Htop
c (Fα1 ,C)⊗Htop

c (Fα2 ,C) =
⊕

α1+α2=α

Aα1 ⊗Aα2 → Aα = Htop
c (Fα,C).

Summing over all α we obtain a multiplication morphism m : A⊗A→ A.

3. Construction of the action

Example 3.7. Recall that the space Zn coincides with the following set:

{M =

(
P P ′

Q Q′

)
| det(M) = 1, Q is monomial of degree n, deg(P ) < n}
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We have the natural deformation:

Y n := {M =

(
P P ′

Q Q′

)
| det(M) ∈ C, Q is monomial of degree n, deg(P ) < n}

equipped with a morphism Y n → A1, M 7→ det(M). This is exactly Shieder’s
degeneration!

We now fix a perverse sheaf P ∈ PervG(O)(GrG) and recall a bialgebra A of the
last Section. We set V := H∗(GrG,P). Our goal is to construct an action A y V .
To do so, we first recall that V =

⊕
µ∈ΛG

Vµ – T∨-weight decomposition and that Vµ =

H〈2ρ
∨,µ〉(Sµ,P), here, 2ρ∨ is the sum of positive roots. So, we must construct maps

Aα1 ⊗ Vα2 → Vα, α = α1 + α2. We will do it by deforming ind-schemes Sα (we start
from deforming GrG the whole Grassmannian).

3.1. Main construction. We start from the simplest case G = SL2. The general case
will be treated completely analogously via Tannakian approach. Recall that GrG is the
moduli space of pairs (E, σ), where E is a G-bundle on X and σ is a trivialization of E
away from {x}. We note that this moduli space coincides with the moduli space of the

following data: {O η−→ E
ζ−→ O}, where η, ζ are rational morphisms with poles at zero

such that (ζ ◦ η)|X\{x} = Id. Let us comment that a rational morphism O → E with
poles at zero is by the definition an element of the inductive limit lim

→
{O(−n · 0)→ E}

(for ζ the definition is analogous).
We are now ready to define our main player – the deformation of GrG:

G̃rG := {O η−→ E1
ϕ−→ E2

ζ−→ O | η, ζ− rational with pole at zero, (ζ ◦ϕ◦η)|P1\{0} = Id}.

Let us define now the degeneration S̃n → A1. To do so, we recall the modular
approach to Sn:

Sn = {O(−n · 0)
η−→ E

ζ−→ O | ζ − rational, (ζ ◦ η)|(P1\{0}) = Id}.
We now define degeneration

S̃n = {O(−n · 0)
η−→ E1

ϕ−→ E2
ζ−→ O | ζ − rational, (ζ ◦ ϕ ◦ η)|(P1\{0}) = Id}.

Let us give the Tannakian definition of the ind-scheme Sν ⊂ GrG. The corresponding
functor of points associates to a scheme S

1) a G-bundle E on X,

2) for every λ∨ ∈ Λ∨+, morphisms of sheaves ηλ∨ : OX(−〈λ∨, ν〉·x)→ Vλ
∨
E and rational

morphisms ζλ∨ : Vλ
∨
E → OX regular on (X \ {x}), satisfying Plücker relations.

The deformations G̃rG, S̃µ can be now defined analogously to Y µ above.

Main property of the deformation G̃rG: for any t 6= 0, the fiber (G̃rG)|t is isomorphic

to GrG, for t = 0 we have (G̃rG)|0 =
⋃

µ1+µ2=µ
Tµ1 × Sµ2 .

Analogously, for any t 6= 0, the fiber (S̃µ)|t is isomorphic to Sµ, for t = 0 we have

(S̃µ)|0 =
⋃

µ1+µ2=µ
Fµ1 × Sµ2 .
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3.2. Action. To define the action via our deformation we must construct a sheaf P̃ on
S̃µ that restricts to C� (P|Sµ2 ) on zero fiber and to P|Sµ on the fiber over 1.

To do so we start from the constructing of the closed embedding ι : S̃µ ↪→ GrG×GrG.
It simply sends

O
η−→ E1

ϕ−→ E2
ζ−→ O

to the pair

(O
ϕ◦η−−→ E1

ζ−→ O , O
η−→ E1

ϕ◦ζ−−→ O) ∈ GrG×GrG .

Lemma 3.8. The morphism ι is a closed embedding.

Define P̃ := ι∗(C� P|Sµ).

Remark 3.3. We note that

We have constructed a sheaf P̃ to S̃µ. It is easy to see that the restriction P̃|
(S̃µ)t

is

isomorphic to P|Sµ and the restriction of P̃ to Fµ1 × Sµ2 is isomorphic to C� (P|Sµ2 ).
The cospecialization construction defines a morphism⊕

µ1+µ2=µ

Aµ1 ⊗ Vµ2 → Vµ.

After summing over all µ we obtain a morphism act : A⊗ V → V .
Let us summarize our results:

Theorem 3.9. a) The bialgebra (A,∆,m) is isomorphic to the universal enveloping
algebra U(n∨).

b) The natural action U(n∨) y V geometrically is given by cospecialization construc-
tion above and coincides with the morphism act after the identification A ' U(n∨).

3.4. Sketch of proof. The proof goes as follows.

3.4.1. First step. First of all we must check that the morphism act : A ⊗ V → V
actually defines an action A y V . To do so, we must show that the following diagram
is commutative:

A⊗A⊗ V m⊗Id //

Id⊗ act
��

A⊗ V

act
��

A⊗ V act // V.

To prove this, we construct a family over A2 and a certain complex on this family such
that the composition act ◦(m ⊗ Id) coincides with the cospecialization morphism for
this complex from (0, 0) to (1, 0) and then to (1, 1). On the other hand the composition
act ◦(Id⊗ act) coincides with the cospecialization morphism for our complex from (0, 0)
to (0, 1) and then to (1, 1).

Recall now that given a stratified variety S and a complex F on S which is constant
on the strata, there exists a natural cospecialization map F |∗s → F |∗t whenever the
stratum containing point s lies in the closure of the stratum containing the point t.

We note now that both the compositions of cospecializations above tautologically
coincide with the cospecialization morphism from (0, 0) to (1, 1) in the whole family
over A2.
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3.4.2. Second step. Our aim now is to prove that the action that we have constructed
comes from the natural action U(g∨) y V i.e. that there exists a morphism of algebras
A → U(g∨) that commutes with our actions. From the general Tannakian formalism,
to do so it is enough to prove that our action is compatible with the tensor structure
on Rep(G∨) i.e. that for any two finite-dimensional G∨-modules V,W the following
diagram is commutative:

A⊗ V ⊗W
actV⊗W //

∆⊗Id
��

V ⊗W

Id
��

A⊗A⊗ V ⊗W
(actV ⊗ actW )◦(Id⊗τ⊗Id) // V ⊗W

(3.1)

where the morphism τ : A⊗ V → V ⊗A sends a⊗ b to b⊗ a. For proving it we again
construct a two-parametric family and a complex such that both compositions in our
diagram coincide with the cospecialization morphism from (0, 0) to (1, 1). Let us briefly
describe the construction. Again let us do it for SL2, in general case we just have to

use a Tannakian approach. Recall that the family S̃n that gave us the action A y V
was the moduli space

S̃n = {O(−n · 0)
η−→ E1

ϕ−→ E2
ζ−→ O | ζ − can have poles at zero, (ζ ◦ϕ ◦ η)|P1\{0} = Id}.

We now deform it in the following way:

˜̃
Sn = {O(−n · 0)

η−→ E1
ϕ1−→ E2

ϕ2−→ E3
ζ−→ O |

| ζ − can have poles at zero, (ζ ◦ ϕ1 ◦ ϕ2 ◦ η)|P1\{0} = Id}.

We obtain the desired two-parametric family, the morphism π̃ :
˜̃
Sn → A2 is given

by (η, ϕ1, ϕ2, ζ) 7→ (detϕ1,detϕ2). We have a natural closed embedding ι̃ :
˜̃
Sn ↪→

GrG×GrG×GrG and we consider a complex
˜̃
P := ι̃∗(C� C� P).

After obtaining a morphism U(a) → U(g∨) it is easy to see that it is injective and
graded dimensions coincide, hence, we obtain the isomorphism.

Remark 3.5. According to the Tannakian formalism, group G∨ coincides with the group
of (tensor) authomorphisms of the fiber functor. Analogously, the Lie algebra g∨ coin-
cides with the set of endomorphisms E of the fiber functor F such that for any V,W
the following diagram is commutative:

F (V )⊗ F (W )
E(V )⊗Id + Id⊗E(W ) //

��

F (V )⊗ F (W )

��
F (V ⊗W )

E(V⊗W ) //// F (V ⊗W ).

We now consider the Lie algebra a ⊂ A, consisting of primitive elements. It follows
from 3.1 and the observation above that we have a Lie algebra homomorphism a→ g∨

that induces a morphism U(a)→ U(g∨).
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4. Possible generalizations and Drinfeld-Gaitssgory deformations

4.1. Drinfeld-Gaitsgory interpolation. Let us start this Section from one general
construction due to Drinfeld-Gaitsgory. Let Z be an algebraic variety equipped with
a C×-action. Let us also denote by X the variety A2 with the following action of C×:
(x, y) 7→ (tx, t−1y. Note that the natural morphism X → A1 that sends (x, y) to xy is
equivariant with respect to the trivial C×-action on A1.

Let us define a scheme Z̃dg (it will be certain scheme over A1). Fix an A1-scheme S.

Define MapsA1(S, Z̃dg) := Maps(S ×
A1

X, Z)Gm .

4.1.1. Main properties. By the definition we have a morphism Z̃dg → A1. We denote

by Z̃dg
t the fiber over zero.

Proposition 4.10. 1) We have Z̃dg
t ' Z for t 6= 0.

2) We have Z̃dg
0 ' Z+ ×

ZC×
Z−, where Z+ := {x ∈ Z | ∃ lim

t→0
t · x}

4.2. Drinfeld-Gaitsgory interpolation of GrG. Recall the reductive group G, max-
imal torus T ⊂ G and the affine Grassmannian GrG, consider the C×-action via

2ρ : C× → T , here T acts by left multiplication. We obtain the interpolation G̃r
dg

G .

Relation between G̃r
dg

G and G̃rG is the following. There exists an open embedding

G̃r
dg

G ↪→ G̃rG that is isomorphism away from zero fiber, on the level of zero fiber it
coincides with the natural embedding

⊔
µ
Tµ × Sµ ↪→

⋃
µ
Tµ × Sµ.

5. Questions

5.1. Quantum universal enveloping algebra. Is it possible to geometrically con-
struct Uq(n

∨) in the same manner?

5.2. Drinfeld-Gaitsgory interpolations. General Drinfeld-Gaitsgory interpolation
construction?

5.3. Kac-Moody Lie algebras. Generalization to affine (Kac-Moody) Lie algebras?


